软式非极大值抑制(Soft-NMS)在计算机视觉中的应用

软式非极大值抑制(Soft-NMS)解决了传统NMS在目标检测中因硬阈值导致的误删问题。通过使用衰减函数降低重叠边界框的得分,Soft-NMS能更有效地选择最佳边界框,提高检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非极大值抑制(Non-Maximum Suppression,NMS)是计算机视觉中常用的一种技术,用于在目标检测任务中消除冗余的边界框。然而,传统的NMS方法在选择最大置信度边界框时使用了硬阈值,这可能导致一些具有较高置信度但有重叠的边界框被错误地删除。为了解决这个问题,提出了软式非极大值抑制(Soft-NMS)方法,它通过降低重叠边界框的得分来减弱它们的影响,从而更有效地选择最佳边界框。

Soft-NMS的基本思想是,在计算重叠边界框的得分时,不再使用硬阈值,而是使用一个衰减函数来降低得分。这个衰减函数在重叠程度增加时逐渐减小得分,从而使得具有较高置信度但有重叠的边界框在得分排序中处于次要位置。

下面是一个用Python实现Soft-NMS的示例代码:

import numpy as np

def soft_nms(boxes, scores
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值