device = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")
model.to(device)
#还有输入输出也放到显卡上
inputs,target = input.to(device),target.to(device)
当网络结构比较复杂,我们可以用新的类去封装他
你就像那个inception等等
虚线框这种将长,宽,通道数都进行了变化。而左边实线那种没有长宽通道数都没有发生变化
虚线那个右边那个是进行了下采样,出现在conv3_1,conv4_1,conv5_1中
conv2_1不会出现。为什么呢,因为conv2_1(我们看50-layer,101-layer,152-layer)中最后输出的通道数是256(256是等于64乘4的)
18-layer,34-layer的不需要,不需要就可以满足,自然就不需要了
…/ 表示当前文件所在的目录的上一级目录
./ 表示当前文件所在的目录(可以省略)
/ 表示当前站点的根目录(域名映射的硬盘目录)
conda uninstall xxx //卸载xxx包
pycharm导入torch一直有问题
显示no module
为什么呢,是因为我把pytorch那个环境删除了同时本工程和那个解释器固定连接了,出了问题
为什么我删除了那个pytorch虚拟环境,因为那个环境torch.cuda.is_available()显示false
本地pkg下载过pytorch后,你以后下载同一版本的Pytorch,好像会首先查找本地,直接秒安装完成