函数的参数
1.函数的创建和调用
-
什么是函数?
- 函数就是执行特定人和以完成特定功能的一段代码
-
为什么需要函数?
- 复用代码
- 隐藏实现细节
- 提高可维护性
- 提高可读性便于调试
-
函数的创建
(图片转载网络)
函数的创建
函数的调用
def calc(a,b):
c=a+b
return c #结束
result=calc(10,20) #调用
print(result)
输出:30
2.函数的参数传递
拿这个做例子:
def calc(a,b): #a,b称为形式参数,简称形参,形参的位置是在函数的定义处
c=a+b
return c
result=calc(10,20) #10,20成为实际参数的值,简称实参,实参的位置是函数的调用处
print(result)
-
位置实参
- 根据形参对应的位置进行实参传递
(图片转载网络)
-
关键字实参
-
根据形参名称进行实参传递
(图片转载网络)
例如,我们再调用一遍
def calc(a,b): c=a+b return c result=calc(10,20) print(result) res=calc(b=10,a=20) #等号左侧变量的称为关键字参数 print(res)
-
输出:30
30
虽然输出结果相同,但是他们的传递方式是不同的
- 函数调用的参数传递内存分析
def fun(arg1,arg2):
print('arg1=',arg1)
print('arg2=',arg2)
arg1=100
arg2.append(10)
print('arg1=',arg1)
print('arg2=',arg2)
n1=11
n2=[22,33,44]
print(n1)
print(n2)
#函数调用之后
fun(n1,n2) #将位置传参,arg1,arg2是函数定义处的形参,n1,n2是函数调用处的参
#总结,实参名称与形参名称可以不一致
print(n1)
print(n2)
输出:
11
[22,33,44]
arg1= 11
arg2= [22, 33, 44]
arg1= 100
arg2= [22, 33, 44, 10]
11
[22, 33, 44, 10]
整个函数调用的参数传递内存分析图如下
(图片转载网络)
在函数调用过程中,进行参数的传递,如果是不可变对象,在函数体的修改不会影响实参的值(arg1的修改为100,不会影响n1的值);如果是可变对象,在函数体的修改会影响到实参的值(arg2的修改,append(10),会影响到n2的值)
3.函数的返回值
- 函数返回多个值时,结果为元组
def fun(num):
odd=[] #存奇数
even=[] #存偶数
for i in num:
if i%2:
odd.append(i)
else:
even.append(i)
return odd,even
print(fun([10,29,34,55,89,66,88]))
输出:([29, 55, 89], [10, 34, 66, 88])
函数的返回值:
(1)如果函数没有返回值,函数执行完毕后,不需要给调用处提供数据,return可以省略不写
(2)函数的返回值,如果是1个,直接返回原类型
(3)函数的返回值,如果是多个,返回的结果为元组
函数在定义时,是否需要返回值,视情况而定
4.函数的参数定义
- 函数定义默认值参数
- 函数定义时,给形参设置默认值,只有与默认值不符的时候才需要传递实参
def fun(a,b=10): #b称为默认值参数
print(a,b)
#函数的调用
fun(100)
fun(20,30)
输出:100 10
20 30
-
个数可变的位置参数
- 定义函数时,可能无法实现确定传递的位置实参的个数时,使用可变的位置参数
- 使用*定义个数可变的位置形参
- 结果为一个元组
def fun(*args): #函数定义时的,可变的位置参数 print(args) fun(10) fun(10,20) fun(20,505,38)
输出:
(10,)
(10, 20)
(20, 505, 38) -
个数可变的关键字形参
- 定义函数时,无法事先确定传递的关键字实参的个数时,使用可变的关键字形参
- 使用**定义个数可变的关键字形参
- 结果为一个字典
def fun(**args): print(args) fun(a=10) fun(a=20,b=30,c=40)
输出:{‘a’: 10}
{‘a’: 20, ‘b’: 30, ‘c’: 40}
个数可变的位置参数,只能是一个
个数可变的关键字参数,也只能是一个
在一个函数的定义过程中,既有个数可变的关键字形参,也有个数可变的位置实参,要求,个数可变的位置形参,放在个数可变的关键字形参之前
-
函数的参数总结
(图片转载网络)
def fun(a,b,c): #a,b,c在函数 print('a=',a) print('b=',b) print('c=',c) #函数的调用 fun(10,20,30) #函数调用时的参数传递,称为位置参数 lst=[11,22,33] fun(*lst) #在函数调用时,将列表中的每个元素都转换为位置实参传入,如果括号内直接为lst,程序会报错 fun(a=100,c=300,b=200) #函数的调用,所以是关键字实参
输出:
a= 10
b= 20
c= 30
a= 11
b= 22
c= 33
a= 100
b= 200
c= 300
如果想进行关键字传参,想将字典中的每个键值对都转为关键字传入,括号内加入两个**即可
例如:
def fun(a,b,c):
print('a=',a)
print('b=',b)
print('c=',c)
dic={'a':100,'b':200,'c':300}
fun(dic)
输出:
TypeError: fun() missing 2 required positional arguments: ‘b’ and ‘c’
我们加上**就会迎刃而解
def fun(a,b,c):
print('a=',a)
print('b=',b)
print('c=',c)
dic={'a':100,'b':200,'c':300}
fun(**dic) #在函数调用时,将字典中的键值对都转换为关键字实参传入
输出:
a= 100
b= 200
c= 300
def fun(a,b=10): #b是在函数的定义处,所以b是形参,而且进行了赋值,所以b称为默认值
print('a=',a)
print('b=',b)
def fun2(*args): #个数可变的位置形参
print(args)
def fun3(**args2): #个数可变的关键字形参
print(args2)
fun2(10,20,30,40)
fun3(a=11,b=22,c=33,d=44,e=55)
输出:
(10, 20, 30, 40)
{‘a’: 11, ‘b’: 22, ‘c’: 33, ‘d’: 44, ‘e’: 55}
def fun(a,b,c,d):
print('a=',a)
print('b=',b)
print('c=',c)
print('d=',d)
#调用fun函数
fun(10,20,30,40) #位置实参传递
print('@@@')
fun(a=10,b=20,c=30,d=40) #关键字实参传递
print('@@@')
fun(10,20,c=30,d=99) #前两个参数,采用的是位置实参传递,而c,d采用的是关键字实参传递
输出:a= 10
b= 20
c= 30
d= 40
@@@
a= 10
b= 20
c= 30
d= 40
@@@
a= 10
b= 20
c= 30
d= 99
如果改为 def fun(a,b,*,c,d):
······
那么在函数调用时,c,d只能采用关键字实参传递
从*之后的参数书,在函数调用时,只能采用关键字参数传递
5.变量的作用域
-
程序代码能访问该变量的区域
-
根据变量的有效范围可分为
- 局部变量
- 在函数内定义并使用的变量,只在函数内部有效,局部变量使用global声明,这个变量就会成全局变量
def fun(a,b): c=a+b #c,就称为局部变量,因为c是在函数体内进行定义的变量,a,b为函数的形参,作用范围也是函数内部,相当于局部变量 print(c) #如果在函数体外输出c,程序会报错 #因为c超出了起作用的范围(超出了作用
- 全局变量
- 函数体外定义的变量,可作用于函数内
name='杨老师' print(name) def fun(): print(name) #调用函数 fun()
输出:
杨老师
杨老师
说明name的作用范围为函数内部和外部都可以使用,称为全局变量
如果局部变量使用global声明,这个变量实际上就变成了全局变量
- 局部变量
6.递归函数
- 什么是递归函数
- 如果在一个函数的函数体内调用了该函数本身,这个函数就称为递归函数
- 递归的组成部分
- 递归调用与递归终止条件
- 递归的调用过程
- 每递归调用一次函数,都会在栈内存分配一个栈帧
- 每执行完一次函数,都会释放相应的空间
- 递归的优缺点
- 优点:思路和代码简单
- 缺点:占用内存多,效率低下
使用递归计算阶乘
(图片转载网络)
def fac(n): #n为计算阶乘的数
if n==1:
return 1
else:
res=n*fac(n-1)
return res
print(fac(6))
输出:720
7.斐波那契数列
含义:斐波那契数列,又称黄金分割数列,因数学家莱昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
前两项之和为下一项
def fib(n): #n表示为第几个位置上的数
if n==1:
return 1
elif n==2:
return 1
else:
return fib(n-1)+fib(n-2)
#斐波那契数列第6位上的数字
print(fib(6))
#输出这个数列的前6位上的数字
for i in range(1,7):
print(fib(i))
输出:
8
1
1
2
3
5
8
=n*fac(n-1)
return res
print(fac(6))
输出:720
## 7.斐波那契数列
含义:斐波那契数列,又称黄金分割数列,因数学家莱昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
前两项之和为下一项
```java
def fib(n): #n表示为第几个位置上的数
if n==1:
return 1
elif n==2:
return 1
else:
return fib(n-1)+fib(n-2)
#斐波那契数列第6位上的数字
print(fib(6))
#输出这个数列的前6位上的数字
for i in range(1,7):
print(fib(i))
输出:
8
1
1
2
3
5
8