编写一个递归函数计算两个正整数的最大公约数。在主函数中输入两个正整数m 和 n 的值,计算两个数的最大公约数和最小公倍数并输出。

本文介绍了如何使用Python编写递归函数来计算两个正整数的最大公约数(GCD),并结合欧几里得算法求解。同时,通过公式推导实现了最小公倍数(LCM)的计算,为读者展示了如何在主函数中输入m和n并输出结果。
摘要由CSDN通过智能技术生成

编写一个递归函数计算两个正整数的最大公约数。在主函数中输入两个正整数m 和 n 的值,计算两个数的最大公约数和最小公倍数并输出。

#include<stdio.h>
int gcd(int m,int n);
int lcm(int m,int n);
int main()
{
   int m,n;
   scanf("%d %d",&m,&n);
    printf("%d %d",(gcd(m,n)),lcm(m,n));
    return 0;
}
int gcd(int m,int n)
{
    int t;
    while(t=m%n)
    {
        m=n;
        n=t;
    }
    return n;
}
int lcm(int m,int n)
{
    return (m*n)/(gcd(m,n));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值