RabbitMQ,什么是rabbitMQ,优点,干什么用的,为什么选择RabbitMQ,使用场景

RabbitMQ是一款基于AMQP协议的开源消息代理软件,能够实现异步消息处理,提高系统吞吐量。本文介绍其工作原理、特点及应用场景,如秒杀系统中的排队机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RabbitMQ

什么是rabbitMQ

    RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue 高级消息队列协议 )的开源实现,
    能够实现异步消息处理
    
    RabbitMQ是一个消息代理:它接受和转发消息。

优点:异步消息处理
业务解耦(下订单操作:扣减库存、生成订单、发红包、发短信),
将下单操作主流程:扣减库存、生成订单
然后通过MQ消息队列完成通知,发红包、发短信
错峰流控 (通知量 消息量 订单量大的情况实现MQ消息队列机制,淡季情况下访问量会少)

          灵活的路由(Flexible Routing) 
            在消息进入队列之前,通过 Exchange 来路由消息的。对于典型的路由功能,RabbitMQ 已经提供了一些内置的 Exchange 来实现。针对更复杂的路由功能,可以将多个 Exchange 绑定在一起,也通过插件机制实现自己的 Exchange 。
    
    RabbitMQ网站端口号:15672
    程序里面实现的端口为:5672

queue队列
Queue(队列)RabbitMQ的作用是存储消息,队列的特性是先进先出。
生产者生产消息最终被送到RabbitMQ的内部对象Queue中去,
而消费者则是从Queue队列中取出数据。

**消息队列**
    消息(Message)是指在应用间传送的数据。消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。 
    消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,
    由消息系统来确保消息的可靠传递。消息发布者只管把消息发布到 MQ 中而不用管谁来取,消息使用者只管从 MQ 中取消息而不管是谁发布的。
    这样发布者和使用者都不用知道对方的存在。

:消息队列中间件
kafka rabbitMQ activeMQ rocketMQ(可以处理分布式事务)

干什么用的:
使用rabbitmq 中间件,将一些无需即时返回且耗时的操作提取出来,进行了异步处理,而这种异步处理的方式大大的节省了服务器的请求响应时间,从而提高了系统的吞吐量。

使用场景

在我们秒杀抢购商品的时候,系统会提醒我们稍等排队中,而不是像几年前一样页面卡死或报错给用户。

为什么选择RabbitMQ

1、除了Qpid,RabbitMQ是唯一一个实现了AMQP标准的消息服务器;

2、可靠性,RabbitMQ的持久化支持,保证了消息的稳定性;

3、高并发,RabbitMQ使用了Erlang开发语言,Erlang是为电话交换机开发的语言,天生自带高并发光环,和高可用特性;

4、集群部署简单,正是应为Erlang使得RabbitMQ集群部署变的超级简单;

5、社区活跃度高,根据网上资料来看,RabbitMQ也是首选;

工作机制

生产者、消费者和代理

在了解消息通讯之前首先要了解3个概念:生产者、消费者和代理。

生产者:消息的创建者,负责创建和推送数据到消息服务器;

消费者:消息的接收方,用于处理数据和确认消息;

代理:就是RabbitMQ本身,用于扮演“快递”的角色,本身不生产消息,只是扮演“快递”的角色。

转载:https://blog.csdn.net/SpringCYB/article/details/89454336?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160082690719724839205203%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=160082690719724839205203&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v25-4-89454336.first_rank_v2_rank_v25&utm_term=rabbitmq%E5%B9%B2%E4%BB%80%E4%B9%88%E7%9A%84&spm=1018.2118.3001.4187
文章转自:https://www.roncoo.com/article/detail/133399

### 回答1: 可以使用java中的LinkedHashMap类来实现LRU缓存淘汰策略。LinkedHashMap是一种特殊的HashMap,它不仅保存了键值对,还维护了一个双向链表来记录插入顺序,当缓存满后,它会将最先插入的元素淘汰掉。 ### 回答2: LRU(最近最少使用)缓存淘汰策略是指在缓存满时,优先淘汰最近最少使用的数据。实现LRU缓存淘汰策略可以使用链表和哈希表的组合。 首先,我们可以创建一个双向链表的节点类,包含键值对的信息,以及前后指针。链表的头部表示最近访问的节点,尾部表示最久未使用的节点。 我们还需要一个哈希表,用于快速查找节点。哈希表的键是缓存的键,值是对应的节点。 接下来,我们需要实现缓存淘汰策略的几个操作: 1. 获取操作:当尝试获取缓存中的键值对时,如果哈希表中存在该键,则将对应的节点移动到链表头部,并返回该值。如果哈希表中不存在该键,则返回空。 2. 添加操作:当添加新的键值对时,如果该键已存在于缓存中,则将该节点移到链表头部,更新值。否则,创建新节点,并将其插入到链表头部和哈希表中。如果缓存已满,删除链表尾部的节点,并在哈希表中删除对应的键。 3. 删除操作:当从缓存中删除某个键值对时,找到对应的节点,从链表中删除该节点,并在哈希表中删除该键。 以上就是使用Java链表实现LRU缓存淘汰策略的基本思路。通过使用双向链表和哈希表的组合,能够快速实现缓存的增删改查操作,并保持对节点访问的顺序,以便实现LRU策略。 ### 回答3: LRU(Least Recently Used,最近最少使用)是一种常用的缓存淘汰策略,当缓存满时,会将最长时间未被使用的数据从缓存中淘汰。实现LRU缓存淘汰策略可以使用Java中的链表来实现。 Java中已经提供了LinkedList类,可以直接用于实现链表数据结构。接下来是一个简单的实现LRU缓存的示例代码: ``` import java.util.LinkedList; public class LRUCache<K, V> { private int capacity; private LinkedList<Entry<K, V>> cache; public LRUCache(int capacity) { this.capacity = capacity; this.cache = new LinkedList<>(); } public V get(K key) { Entry<K, V> entry = findEntryByKey(key); if (entry != null) { // 将使用的数据移动到链表头部 cache.remove(entry); cache.addFirst(entry); return entry.value; } return null; } public void put(K key, V value) { Entry<K, V> entry = findEntryByKey(key); if (entry != null) { // 如果key已存在,更新其value,并将数据移动到链表头部 entry.value = value; cache.remove(entry); cache.addFirst(entry); } else { // 如果key不存在,先判断容量是否已满,如果已满则移除最久未使用的数据 if (cache.size() >= capacity) { cache.removeLast(); } // 将新数据插入到链表头部 Entry<K, V> newEntry = new Entry<>(key, value); cache.addFirst(newEntry); } } private Entry<K, V> findEntryByKey(K key) { for (Entry<K, V> entry : cache) { if (entry.key.equals(key)) { return entry; } } return null; } private static class Entry<K, V> { private K key; private V value; public Entry(K key, V value) { this.key = key; this.value = value; } } } ``` 使用示例: ``` LRUCache<String, Integer> cache = new LRUCache<>(3); cache.put("a", 1); cache.put("b", 2); cache.put("c", 3); System.out.println(cache.get("a")); // 输出1 cache.put("d", 4); System.out.println(cache.get("b")); // 输出null,因为b是最久未使用的数据,已被淘汰 ``` 在LRUCache类中,使用LinkedList作为缓存的数据存储结构。缓存的最近使用的数据总是位于链表的头部,当需要访问或更新数据时,将其移动到链表头部。当缓存已满时,移除链表尾部的最久未使用的数据。 这种实现方式可以在O(1)的时间复杂度内实现get和put操作,符合LRU缓存淘汰策略的特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值