SQL 优化是提升数据库性能的关键,以下是立即见效的 10 个最直接优化方法:
1. 添加适当的索引(最快见效)
-- 为常用查询条件添加索引
CREATE INDEX idx_user_name ON users(name);
CREATE INDEX idx_order_date ON orders(create_date);
-- 复合索引要遵循最左前缀原则
CREATE INDEX idx_user_search ON users(last_name, first_name, age);
效果:可使查询速度提升数十倍到数百倍。
2. 避免 SELECT *(立即减少I/O)
-- 不好
SELECT * FROM products;
-- 优化后
SELECT product_id, product_name, price FROM products;
效果:减少数据传输量,特别对大表效果显著。
3. 优化 WHERE 子句(简单但高效)
-- 避免在索引列上使用函数
-- 不好
SELECT * FROM users WHERE DATE_FORMAT(create_time,'%Y-%m-%d') = '2023-01-01';
-- 优化后
SELECT * FROM users WHERE create_time >= '2023-01-01' AND create_time < '2023-01-02';
4. 使用 EXPLAIN 分析执行计划(诊断必备)
EXPLAIN SELECT * FROM orders WHERE user_id = 100 AND status = 'completed';
重点关注:
-
type 列(最好到 ref/range)
-
possible_keys 和 key 列(是否用对索引)
-
rows 列(扫描行数)
5. 优化 JOIN 操作(大数据量关键)
-- 确保 JOIN 字段有索引
ALTER TABLE orders ADD INDEX idx_user_id(user_id);
-- 小表驱动大表
SELECT * FROM small_table s JOIN large_table l ON s.id = l.small_id;
6. 限制返回数据量(快速见效)
-- 添加 LIMIT
SELECT * FROM logs ORDER BY create_time DESC LIMIT 100;
-- 分页优化(避免 OFFSET 大数值)
SELECT * FROM logs WHERE id > 1000 ORDER BY id LIMIT 100;
7. 避免全表扫描(紧急修复)
-- 检查慢查询日志中全表扫描的查询
-- 添加条件使查询能够使用索引
8. 优化数据类型(长期受益)
-- 使用合适的数据类型
-- 不好
ALTER TABLE users MODIFY age VARCHAR(10);
-- 优化后
ALTER TABLE users MODIFY age TINYINT UNSIGNED;
9. 批量操作替代循环(大幅提升)
-- 不好(N+1问题)
for user_id in user_list:
INSERT INTO logs(user_id, action) VALUES(user_id, 'login');
-- 优化后
INSERT INTO logs(user_id, action)
VALUES (1, 'login'), (2, 'login'), ...;
10. 定期维护(预防性优化)
-- 重建碎片化索引
ALTER TABLE orders ENGINE=InnoDB;
-- 更新统计信息
ANALYZE TABLE users;
紧急情况处理流程
-
找到慢查询(SHOW PROCESSLIST / 慢查询日志)
-
EXPLAIN 分析
-
添加适当索引
-
重写问题SQL
-
验证改进效果
这些方法实施后,大多数SQL性能问题都能得到显著改善。对于复杂场景,可能需要进一步考虑查询重构、数据库分区等高级优化技术。