- 博客(3)
- 收藏
- 关注
原创 Unet网络---网络结构和pytorch实现
也即我们对人脸进行了编码。Unet网络结构简单,参数量少,但是可以获得细节丰富的输出,U形网络设计也为之后的计算机视觉工作提供了很多思路,同时也Unet网络也可以做很多优化改动,例如,可以在跳跃链接(skip)上添加注意力机制(Attention Mechanism)例如:通道-空间注意力机制;Unet相较于其他深度学习网络,更常用于计算机视觉领域,因为可以输出输入图像原始尺寸大小的图片,可以在输入图片上实现01分割,分类,语义分割等计算机视觉任务,且大部分只需要更改网络输出层的输出头,即可实现不同任务。
2023-09-13 19:46:44 2836
原创 深度学习卷积神经网络--浅析(一)
基于卷积神经⽹络架构的模型在计算机视觉领域中已经占主导地位,当今⼏乎所有的图像识别、⽬标检测或语义分割相关的学术竞赛和商业应⽤都以这种⽅法为基础。本文将简单介绍卷积神经网络和卷积操作,了解卷积神经网络如何一步一步计算结果。上面手写识别可以看到,经过不同的卷积层提取后的一个二维图像数据,每一层的特征图也会不一样,最终将会表示成一个数字结果,实现数字识别的目标我们将介绍构成所有卷积⽹络主⼲的基本元素。
2023-09-13 16:40:12 173
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人