关于微软积分,微软商城奖励对换不了,确认奖励兑换是灰色的。解决办法,【亲测有效】【必须电脑】

原址链接:【图片】确认按钮灰色?教你如何恢复【微软rewards吧】_百度贴吧 (baidu.com)

博主的积分用完了,一时半会凑不到那么多,暂借贴吧道友素材一用(感谢)

转自百度贴吧,做了改进,如有侵权,请联系删除!!!

转自百度贴吧,做了改进,如有侵权,请联系删除!!!

转自百度贴吧,做了改进,如有侵权,请联系删除!!!



事出于此,确认奖励按不了


开始之前,大家先修改,最下面的一行小字,显示为Chinese-neutral,如果没有修改应该是中国,中文,请先修改到Chinese——neutral之后,再进下面的步骤

这里上面有一行小字,Chinese-Neutral

1、首先确认已经给予rewards位置权限,若没有提示请手动设置允许,如图



2、给予位置权限后请刷新rewards网页 若依旧无法确认,请执行以下步骤
在rewards网页中按F12呼出开发工具箱,点击网络、勾选禁用缓存

3、按F5刷新网页,等待验证完成,找到verify开头的请求,右键选择在新标签打开,打开后应如下图所示,红色的,找红色,右击选择新建页面打开即可

右击打开如图4、打开后切换到rewards标签页,刷新网页 会发现已经可以兑换了

 
 

转自百度贴吧,做了改进,如有侵权,请联系删除!!!

转自百度贴吧,做了改进,如有侵权,请联系删除!!!

转自百度贴吧,做了改进,如有侵权,请联系删除!!!

博主的积分用完了,一时半会凑不到那么多,暂借贴吧道友素材一用(抱拳)

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值