题目
题意
求树上满足条件的点对的个数,条件是在这两点间不经过重复的点能吃到的苹果类型的总数大于 k。
题解
这道题和Tree 这道题相似,用树的分治的方法来做。但 Tree 算的是距离,这道题算的是苹果种类数,所以可以用二进制的方法将状态压缩一下。
还有一个地方需要注意的是,在进行路径合并的时候,需要用子集枚举的方法找到满足要求的所有路径。
代码
#include <algorithm>
#include <bitset>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <climits>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
const int MAX = 50005;
vector<int>G[MAX];
int vis[MAX];
int colour[MAX];
int pre[11];
long long req;
int getSize(int u,int fa){
int len = G[u].size();
int sum = 1;
for(int i=0;i<len;++i){
int v = G[u][i];
if(v != fa && vis[v] == 0){
sum += getSize(v,u);
}
}
return sum;
}
int getRoot(int u, int fa,int &root, int &mx, int n) {
int len = G[u].size();
int sum = 1;
int mx1 = 0;
for(int i=0;i<len;++i){
int v = G[u][i];
if(v != fa && vis[v] == 0){
int temp = getRoot(v,u,root,mx,n);
mx1= max(mx1, temp);
sum += temp;
}
}
mx1 = max(mx1, (n - sum));
if(mx1 < mx){
root = u;
mx = mx1;
}
return sum;
}
long long sum;
int N[MAX];
int num;
int n,k;
long long Hash[5000];
void getDeep(int u, int fa, int d){
d |= pre[colour[u]];
N[num++] = d;
int len = G[u].size();
for(int i=0;i<len;++i){
int v = G[u][i];
if(vis[v] == 0 && v != fa)
getDeep(v,u, d);
}
}
long long calu(int u, int d){
num = 0;
getDeep(u,0,d);
long long tot = 0;
for(int i=0;i<=req;++i)
Hash[i] = 0;
for(int i=0;i<num;++i){
Hash[N[i]]++;
}
for(int i=0;i<num;++i){
for(int j=N[i];j;j = N[i] & (j-1)){
tot += Hash[j ^ req];
}
tot += Hash[req];
}
return tot;
}
void dfs(int u){
int root = 0;
int mx = INT_MAX;
int n = getSize(u,0);
getRoot(u,0,root,mx,n);
vis[root] = 1;
sum += calu(root,0);
int len = G[root].size();
for(int i = 0;i < len;++i){
int v = G[root][i];
if(vis[v] == 0){
sum -= calu(v,pre[colour[root]]);
dfs(v);
}
}
}
void init(int n) {
for (int i = 1; i <= n; ++i) {
G[i].clear();
}
sum = 0;
memset(vis,0,sizeof(vis));
}
int main(){
for(int i=0;i<11;++i) pre[i] = (1 << i);
while(scanf("%d %d",&n,&k) != EOF) {
init(n);
int u,v;
req = pre[k] - 1;
for(int i=1;i<=n;++i){
scanf("%d",colour + i);
colour[i]--;
}
for (int i = 0; i < n - 1; ++i) {
scanf("%d %d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1);
printf("%lld\n",sum);
}
return 0;
}
本文介绍了一种使用树的分治方法解决特定问题的算法,该问题要求计算树上满足条件的点对数量,条件是在这两点间不经过重复的点能吃到的苹果类型的总数大于给定值k。文章详细解释了如何利用二进制状态压缩和子集枚举来实现这一目标。
1162

被折叠的 条评论
为什么被折叠?



