1.括号匹配问题
用栈实现括号匹配:
依次扫描所有字符,遇到左括号入栈,遇到右括号则弹出栈顶元素检查是否匹配。
匹配失败情况:
- 左括号单身
- 右括号单身
- 左右括号不匹配
代码实现:
#define MaxSize 10 //定义栈中元素的最大个数
typedef struct{
char data[MaxSize]; //静态数组存放栈中元素
int top; //栈顶指针
}SqStack; //定义顺序栈结构类型
bool bracketCheck(char str[], int length) {
SqStack S; //定义栈S
InitStack(S); //初始化一个栈
for (int i=0; i<length; i++){ //从左往右依次扫描字符
if (str[i]=='('||str[i]=='['||str[i]=='{'){
Push(S,str[i]); //扫描到左括号,执行入栈操作
}else {
if (StackEmpty(S)) //扫描到右括号,且当前栈为空
return false; //匹配失败
char topElem; //新定义变量用来存储弹出栈的元素
Pop(S,topElem); //栈顶元素出栈
if(str[i]==')'&&topElem!='(')//判断括号是否匹配
return false;
if(str[i]==']'&&topElem!='[')
return false;
if(str[i]=='}'&&topElem!='{')
return false;
}
}
return StackEmpty(S); //检索完全部括号后,栈空说明匹配成功
}
//其他常用操作
//初始化栈
void InitStack(SqStack &S)
//判断是否为空
bool StackEmpty(SqStack S)
//新元素入栈
bool Push(SqStack &S,char x)
//栈顶元素出栈,用x返回
bool Pop(SqStack &S,char &x)
2.表达式求值问题
算术表达式由三个部分组成:操作数,运算符,界限符(即括号)
中缀表达式:运算符在两个操作数中间
例:a+b;a+b+c;a+b-c*d
后缀表达式:运算符在两个操作数后面(后缀表达式适用于基于栈的编程语言)
例:ab+;ab+c-;ab+cd*-
前缀表达式:运算符在两个操作数前面
例:+ab;-+abc;-+ab*cd
三种表达式只是符号位置不同,计算方式还是相同的,运算时括号优先,剩余部分先从左往右依次计算,后缀表达式满足左优先原则,前缀表达式满足右优先原则。
2.1中缀转后缀的手算方法
- 确定中缀表达式中各个运算符的运算顺序
- 选择下一个运算符,按照**[左操作数 右操作数 运算符]**的方式组合成一个新的操作数
- 如果还有运算符没被处理,就继续步骤2
左优先原则:当一个数左右两边的运算符优先级相同时优先计算左边
2.2后缀表达式的手算方法
从左往右扫描,每遇到一个运算符,就让运算符前面最近的两个操作数执行对应运算,合体为一个操作数
2.3用栈实现后缀表达式的计算
- 从左往右扫描下一个元素,直到处理完所有元素
- 若扫描到操作数则压入栈,并回到步骤1;否则执行步骤3
- 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤1
注意:先出栈的是右操作数。
2.4中缀转前缀的手算方法
- 确定中缀表达式中各个运算符的运算顺序
- 选择下一个运算符,按照**[运算符 左操作数 右操作数]**的方式组合成一个新的操作数
- 如果还有运算符没被处理,就继续步骤2
右优先原则:当一个数左右两边的运算符优先级相同时优先计算右边
2.5用栈实现前缀表达式计算
- 从右往左扫描下一个元素,直到处理完所有元素
- 若扫描到操作数则压入栈,并回到步骤1,否则执行步骤3
- 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤1
注意:先出栈的是左操作数。
2.6机算实现中缀表达式转后缀表达式
初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。
从左到右处理各个元素,直到末尾。可能遇到三种情况:
- 遇到操作数。直接加入后缀表达式。
- 遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式,直到弹出“(”为止。注意:“)”不加入后缀表达式。
- 遇到运算符。依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,若栈顶碰到“(”或栈空则停止。之后再把当前运算符入栈。
按上述方法处理完所有字符后,将栈中剩余运算符依次弹出,并加入后缀表达式。
2.7用栈实现中缀表达式的计算
用栈实现中缀表达式的计算:
初始化两个栈,操作数栈和运算符栈
若扫描到操作数,压入操作数栈
若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈(期间也会弹出运算符,每当弹出一个运算符时,就需要再弹出两个操作数栈的栈顶元素并执行相应运算,运算结果在压回操作数栈)
3.栈在递归中的应用
函数调用的特点:最后调用的函数最先执行结束。
函数调用时,需要用一个栈存储:
- 调用返回地址
- 实参
- 局部变量
适合用“递归”算法解决:可以把原始问题转换为属性相同,但规模较小的问题。
例子:递归算法求阶乘
//计算正整数n!
int factorial (int n){
if (n==0 || n==1)
return 1;
else
return n*factorial(n-1);
}
int main() {
//...其他代码
int x=factorial(10);
printf("计算完成!");
}
递归调用时,函数调用栈可称为“递归工作栈”
每进入一层递归,就将递归调用所需信息压入栈顶
每退出一层递归,就从栈顶弹出相应信息
递归的缺点:效率低太多层递归可能会导致栈溢出。可能包含多次重复运算。