8.栈的应用

1.括号匹配问题

用栈实现括号匹配:

依次扫描所有字符,遇到左括号入栈,遇到右括号则弹出栈顶元素检查是否匹配。

匹配失败情况:

  • 左括号单身
  • 右括号单身
  • 左右括号不匹配

在这里插入图片描述

代码实现:

#define MaxSize 10		//定义栈中元素的最大个数
typedef struct{
    char data[MaxSize];	//静态数组存放栈中元素
    int top;			//栈顶指针
}SqStack;			//定义顺序栈结构类型	

bool bracketCheck(char str[], int length) {
    SqStack S;		//定义栈S
    InitStack(S);	//初始化一个栈
    for (int i=0; i<length; i++){	//从左往右依次扫描字符
        if (str[i]=='('||str[i]=='['||str[i]=='{'){
            Push(S,str[i]);		//扫描到左括号,执行入栈操作
        }else {
            if (StackEmpty(S))	//扫描到右括号,且当前栈为空
                return false;	//匹配失败
                
            char topElem;		//新定义变量用来存储弹出栈的元素
            Pop(S,topElem);		//栈顶元素出栈
            if(str[i]==')'&&topElem!='(')//判断括号是否匹配
                return false;
            if(str[i]==']'&&topElem!='[')
                return false;
            if(str[i]=='}'&&topElem!='{')
                return false;
        }
    }
    return StackEmpty(S);	//检索完全部括号后,栈空说明匹配成功
}

//其他常用操作
//初始化栈
void InitStack(SqStack &S)

//判断是否为空
bool StackEmpty(SqStack S)

//新元素入栈
bool Push(SqStack &S,char x)
    
//栈顶元素出栈,用x返回
bool Pop(SqStack &S,char &x)

2.表达式求值问题

算术表达式由三个部分组成:操作数,运算符,界限符(即括号)

中缀表达式:运算符在两个操作数中间

例:a+b;a+b+c;a+b-c*d

后缀表达式:运算符在两个操作数后面(后缀表达式适用于基于栈的编程语言)

例:ab+;ab+c-;ab+cd*-

前缀表达式:运算符在两个操作数前面

例:+ab;-+abc;-+ab*cd

三种表达式只是符号位置不同,计算方式还是相同的,运算时括号优先,剩余部分先从左往右依次计算,后缀表达式满足左优先原则,前缀表达式满足右优先原则。

2.1中缀转后缀的手算方法

  1. 确定中缀表达式中各个运算符的运算顺序
  2. 选择下一个运算符,按照**[左操作数 右操作数 运算符]**的方式组合成一个新的操作数
  3. 如果还有运算符没被处理,就继续步骤2

左优先原则:当一个数左右两边的运算符优先级相同时优先计算左边

在这里插入图片描述

2.2后缀表达式的手算方法

从左往右扫描,每遇到一个运算符,就让运算符前面最近的两个操作数执行对应运算,合体为一个操作数

在这里插入图片描述

2.3用栈实现后缀表达式的计算

  1. 从左往右扫描下一个元素,直到处理完所有元素
  2. 若扫描到操作数则压入栈,并回到步骤1;否则执行步骤3
  3. 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤1

注意:先出栈的是右操作数。

2.4中缀转前缀的手算方法

  1. 确定中缀表达式中各个运算符的运算顺序
  2. 选择下一个运算符,按照**[运算符 左操作数 右操作数]**的方式组合成一个新的操作数
  3. 如果还有运算符没被处理,就继续步骤2

右优先原则:当一个数左右两边的运算符优先级相同时优先计算右边

在这里插入图片描述

2.5用栈实现前缀表达式计算

  1. 从右往左扫描下一个元素,直到处理完所有元素
  2. 若扫描到操作数则压入栈,并回到步骤1,否则执行步骤3
  3. 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤1

注意:先出栈的是左操作数。

2.6机算实现中缀表达式转后缀表达式

初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。

从左到右处理各个元素,直到末尾。可能遇到三种情况:

  1. 遇到操作数。直接加入后缀表达式。
  2. 遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式,直到弹出“(”为止。注意:“)”不加入后缀表达式。
  3. 遇到运算符。依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,若栈顶碰到“(”或栈空则停止。之后再把当前运算符入栈。

按上述方法处理完所有字符后,将栈中剩余运算符依次弹出,并加入后缀表达式。

在这里插入图片描述

2.7用栈实现中缀表达式的计算

用栈实现中缀表达式的计算:

初始化两个栈,操作数栈运算符栈

若扫描到操作数,压入操作数栈

若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈(期间也会弹出运算符,每当弹出一个运算符时,就需要再弹出两个操作数栈的栈顶元素并执行相应运算,运算结果在压回操作数栈

3.栈在递归中的应用

函数调用的特点:最后调用的函数最先执行结束。

函数调用时,需要用一个栈存储:

  1. 调用返回地址
  2. 实参
  3. 局部变量

适合用“递归”算法解决:可以把原始问题转换为属性相同,但规模较小的问题。

例子:递归算法求阶乘

//计算正整数n!
int factorial (int n){
    if (n==0 || n==1)
        return 1;
    else
        return n*factorial(n-1);
}

int main() {
    //...其他代码
    int x=factorial(10);
    printf("计算完成!");
}

在这里插入图片描述

递归调用时,函数调用栈可称为“递归工作栈”

每进入一层递归,就将递归调用所需信息压入栈顶

每退出一层递归,就从栈顶弹出相应信息

递归的缺点:效率低太多层递归可能会导致栈溢出。可能包含多次重复运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值