自去年以来,国内AI大模型迎来了爆发式增长,国家互联网信息办公室副主任7月31日在第十二届互联网安全大会上表示,截至目前,我国已经完成备案并上线,能为公众提供服务的生成式人工智能服务大模型已达180多个。大模型狂飙了一年多,在各行各业的落地现状如何,又在哪些场景最具应用潜力。
2024年政府工作报告中提出开展“人工智能+”行动,从国家到地方政府均发布了AI的相关产业政策,制造、医疗、农业、金融、物流等5个大场景被多次提及。
据《2024年前瞻中国AI大模型场景应用趋势蓝皮书》(下称“《报告》”)显示,当前AI大模型企业主要通过深化通用大模型能力或打造垂类行业大模型两种路径为下游行业提供AI大模型应用服务。从AI大模型行业应用路径的具体占比情况来看,当前60%的企业也是通过垂类行业大模型实现AI大模型在行业的应用布局。
《报告》显示,从应用潜力行业排序来看,金融、电商、教育、医疗、制造业是未来五年应用潜力最高的下游行业,这些大场景前期信息化、数字化基础较好,具有丰富的数据积累,并且行业对前沿技术接受度和支付意愿较高。
**在金融领域,**智慧金融市场规模持续增长,预计2025年将达到3638亿元,为AI大模型落地应用提供广阔空间。金融行业数字化程度高,数据积累丰富,对新技术的接受度和支付意愿强,为AI大模型的应用奠定了坚实基础。
在金融领域,AI大模型有着丰富的应用场景,一是****智能风控,AI大模型可以识别欺诈交易,评估信用风险,进行合规审查。二是智能营销, AI大模型可以通过分析用户数据,精准识别客户需求,实现个性化产品推荐。**三是智能客服,**AI大模型可以7*24小时在线为客户提供服务,解答问题,处理投诉。例如,商汤科技与上海银行合作,推出AI数字员工“海小智、海小慧”,为用户提供业务咨询、产品推介等服务。**四是智能投研,**AI大模型可以提供投资建议,辅助投资决策。例如,澜舟科技与中国联通合作,推出智能投研解决方案,该方案基于AI大模型,扩展了投研知识库,提供智能分析助手,帮助研究人员快速获取信息,进行深度分析,提高投研效率和质量。
这四个场景中,智能风控被认为是AI大模型在金融领域应用落地价值最高且最具潜力的应用场景,随着金融行业对风险控制需求的增高,大模型在风控领域的应用将会更加广泛和深入。
**在医疗领域,**根据《报告》预测,智慧医疗市场预计2028年将达到2332亿元,为AI大模型应用提供巨大市场空间。国内“大模型六小龙”之一的百川智能曾多次公开表示,“医疗是大模型皇冠上的明珠”,医疗健康领域数据量庞大,且对准确性和安全性要求极高,AI大模型在此领域的发展也极具潜力。
AI大模型在医疗领域的应用场景主要包括辅助诊疗、药物研发、电子病历等。据专业媒体机构数字开物不完全统计, 在诊疗场景下AI大模型可用于辅助医生检查,提高诊断效率。例如,医准智能此前基于多模态数据打造的超声医学大模型,推出YiZhun Ultrasound GPT,以医疗AI大模型在超声影像中的应用,赋能超声影像智能化升级,提升诊断和治疗效率;智谱AI与北京中医药大学东方医院合作,开发数字中医服务平台,提供医疗问答、中医诊方生成和辅助诊疗等功能;APUS医疗大模型与河南省儿童医院合作,基于AI大模型搭建智能诊疗平台,打造AI数字医生,并构建智能评价体系,自4月全面上线以来,迅速成为河南省儿童医院的明星服务项目,为患者提供了精准的健康咨询服务、智能分诊、诊中提醒等服务,大幅度提高了就诊效率。
在药物研发场景下,AI大模型可用于加速新药研发进程,例如,北京市计算中心携手百度,利用百度飞桨螺旋桨PaddleHelix生物计算平台提供的文心生物计算大模型技术,对多年来积累的高质量“药物虚拟筛选数据库”的化合物进行了数据挖掘和过滤,为药物研发提质增效。
关于电子病历, AI大模型可用于自动识别和提取电子病历信息,例如,云知声基于山海大模型打造的门诊病历生成系统,与北京友谊医院合作,随着医患对话的进行,系统界面上将逐渐生成了一份准确、简洁的医疗摘要。
此外在制造业领域,AI大模型助力智能制造,驱动产业转型升级,国家也高度重视智能制造的发展,陆续出台了一系列产业政策,持续推进制造业的数字化转型。
**在制造业领域,**AI大模型应用场景十分丰富,例如:
产品设计: AI大模型可用于产品设计和优化,缩短研发周期,降低研发成本。
生产制造: AI大模型可用于实现生产过程智能化控制,提高生产效率,降低能耗。
质量检测: AI大模型可用于产品缺陷检测,提高检测效率和准确率。
设备维护: AI大模型可用于设备故障预测和预防性维护,减少停机时间,延长设备寿命。
能源管理: AI大模型可用于分析能源消耗数据,优化能源调度和使用,降低能源消耗。
此外,人工智能技术还在柔性制造、机器人协助制造、工业检测和设备互联管理等深层次应用场景中得到广泛应用。
除了以上五大场景,**在物流领域,**AI大模型赋能智慧物流,应用场景包括智能调度、路线规划、仓储管理以及物流预测等,AI大模型的应用将构建更加高效、智能的物流体系。
**在农业领域,AI大模型应用场景包括精准种植、病虫害防治、农业机器人等,**AI大模型可用于分析土壤数据、气象数据等,制定最佳种植方案;可用于识别和预警病虫害,实现精准防治,减少农药使用,提高农产品质量;可用于控制农业机器人,实现自动化作业,这些场景的应用都有助于推动农业精细化管理,提高农业生产效率和效益,助力农业现代化发展。
根据国际知名数据公司预测,全球 AI 计算市场规模将从 2022 年的 788.4 亿人民币 增长到 2026 年的 4555.2 亿人民币。其中,生成式 AI 计算市场规模将从 2022 年的 60 亿人民币增长到 2026 年的 802.3 亿人民币,AI大模型行业前景巨大。
在AI大模型的场景应用中,企业需要深度挖掘行业痛点,聚焦能创造实质价值的应用场景。在此基础上,全面评估模型的场景适配性和业务价值,权衡实施成本与投资回报,关键在于实现与现有系统的无缝集成,并持续优化性能。
此外,企业还应重视安全合规问题,为未来发展预留扩展空间,成功的应用不仅能解决行业痛点,提升效率、降低成本,还可能带来业务模式的创新。
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取