可以发现每次修改实际上就是对于树的点权的修改,每次询问就是路径求和.利用DFS序的性质,实际上就是单点修改区间求和.对于修改
(a<b)
实际上就是使b的点权值为0
PS:因为统计的是点权,所以答案要-1.n<=2e5,但点数有5e5
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=5e5+10,M=N*4;
typedef long long ll;
ll ls[M],rs[M],flag[M],sum[M],a[N],
n,m,
ins[N],out[N],dfssum[N],cnt=0,mk[N];
struct Edge{
int to,next;
Edge(int to=0,int next=0):to(to),next(next){}
}e[N<<1];int head[N],tot=0;
void add_edge(int u,int v){e[++tot]=Edge(v,head[u]);head[u]=tot;}
void dfs(int u,int fa)
{
ins[u]=++cnt;dfssum[cnt]=a[u];mk[cnt]=1;
for(int i=head[u];i;i=e[i].next){
int id=e[i].to;
if(id==fa)continue;
dfs(id,u);
}
out[u]=++cnt;dfssum[cnt]=-a[u];mk[cnt]=-1;
}
void build(int k,int l,int r)
{
ls[k]=l;rs[k]=r;sum[k]=flag[k]=0;
if(l==r) {sum[k]=dfssum[l];flag[k]=mk[l];return;}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
sum[k]=sum[k<<1]+sum[k<<1|1];
flag[k]=flag[k<<1]+flag[k<<1|1];
}
void update(int k,int pos)
{
if(ls[k]==rs[k]){sum[k]=0;return;}
int mid=(ls[k]+rs[k])>>1;
if(pos<=mid)update(k<<1,pos);
else update(k<<1|1,pos);
sum[k]=sum[k<<1]+sum[k<<1|1];
}
ll query(int k,int ql,int qr)
{
if(ql==ls[k]&&qr==rs[k]){return sum[k];}
int mid=(ls[k]+rs[k])>>1;
if(qr<=mid)return query(k<<1,ql,qr);
else if(ql>mid)return query(k<<1|1,ql,qr);
else return (query(k<<1,ql,mid)+query(k<<1|1,mid+1,qr));
}
int main()
{
scanf("%lld",&n);
fo(i,1,n) a[i]=1;
for(int u,v,i=1;i<n;i++) {
scanf("%d%d",&u,&v);
add_edge(u,v);add_edge(v,u);
}dfs(1,0);
build(1,1,cnt);
scanf("%lld",&m);
for(int i=1;i<=m+n-1;i++){
char op[3];int x,y;
scanf("%s",op);
if(op[0]=='A'){scanf("%d%d",&x,&y);update(1,ins[y]);update(1,out[y]);}
else {scanf("%d",&x);printf("%lld\n",query(1,1,ins[x])-1ll);}
}
return 0;
}