7-24 约分最简分式

本文介绍了一个简单的程序,用于将用户输入的分数约分为最简形式。通过寻找分子和分母的最大公约数并进行约分,确保输出的分数无法进一步简化。

分数可以表示为分子/分母的形式。编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。

输入格式:

输入在一行中给出一个分数,分子和分母中间以斜杠/分隔,如:12/34表示34分之12。分子和分母都是正整数(不包含0,如果不清楚正整数的定义的话)。

提示:scanf的格式字符串中加入/,让scanf来处理这个斜杠。

输出格式:

在一行中输出这个分数对应的最简分式,格式与输入的相同,即采用分子/分母的形式表示分数。如 5/6表示6分之5。

输入样例:

66/120

输出样例:

11/20

 

主要是找分子和分母的公约数,如果找到则约分,然后继续找;找不到则为最简。

#include<stdio.h>

int main(){
	int zi, mu, min, i;
	scanf("%d/%d", &zi, &mu);
	min = zi > mu ? mu : zi;
	for(i = 2; i <= min; i++){
		if(zi % i == 0 &&  mu % i == 0){
			zi /= i;
			mu /= i;
			min = zi > mu ? mu : zi;
			i = 1;
		}
	}
	printf("%d/%d", zi, mu);
	return 0;
}

这是我的代码,有两点是比较重要的。第一是条件运算符的运用,第二是写循环的时候一开始以为要用到多层循环,而外层循环的条件又比较难写(因为循环内的语句可能会影响到循环的判断语句),后来想到用一层循环,在if语句内改变外层变量的方法(虽然很简单,但是平时较少会这么写)。

 

后来又在网上找到了更为简洁的写法,这种写法对于题目的认识更为深刻:i直接等于分母,直到i=2,即可保证得到最简分式。因为将分母拆开,不会有相同的因子,最大的因子也不会超过分母。代码如下:

#include<stdio.h>

int main()
{
    int zi,mu,i;
    scanf("%d/%d", &zi, &mu);
    for(i = mu; i >= 2; i--){
        if(zi % i == 0 && mu % i == 0){
           zi = zi / i;
           mu = mu / i;
        }
    }
    printf("%d/%d", zi, mu);
    return 0;
}

 

使用C语言实现约分分式,核心思路是找出分子和分母的大公约数,然后用分子和分母分别除以这个大公约数。以下是两种实现方法及代码: ### 方法一:使用欧几里得算法求大公约数 ```c #include <stdio.h> int main() { int dividend, divisor; // 读取用户输入的分数 scanf("%d/%d", &dividend, &divisor); int a = dividend; int b = divisor; int t; // 使用欧几里得算法求大公约数 while (b > 0) { t = a % b; a = b; b = t; } // a为大公约数 // 输出分式 printf("%d/%d\n", dividend / a, divisor / a); return 0; } ``` 这种方法通过欧几里得算法(辗转相除法)来计算分子和分母的大公约数。该算法的原理是用较大数除以较小数得到余数,再用除数和余数反复做除法运算,当余数为 0 时,当前的除数就是大公约数。 ### 方法二:通过循环逐步约分 ```c #include <stdio.h> int min(int x, int y); int main() { int fz, fm, i = 1; // 读取用户输入的分数 scanf("%d/%d", &fz, &fm); do { i++; // 判断i是否为分子和分母的公因数 if (fz % i == 0 && fm % i == 0) { fz = fz / i; fm = fm / i; i = 1; // 初始化i,应对a,c为9的公倍数这种情况 } } while (i < min(fz, fm)); // 截至条件是公因数不能大于分子和分母中的较小值 // 输出分式 printf("%d/%d", fz, fm); return 0; } int min(int x, int y) { if (x >= y) return y; else return x; } ``` 这种方法通过一个循环,从 2 开始逐步检查每个数是否为分子和分母的公因数,如果是则进行约分,并将计数器重置为 1,继续检查。直到计数器大于分子和分母中的较小值为止。 ### 代码解释 - **输入处理**:使用 `scanf` 函数读取用户输入的分数,通过在格式字符串中加入 `/` 来处理斜杠分隔符。 - **大公约数计算**:方法一使用欧几里得算法高效地计算大公约数;方法二则通过循环逐步尝试所有可能的公因数。 - **输出结果**:将分子和分母分别除以大公约数,得到分式,并以 `分子/分母` 的形式输出。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值