斐波那契循环节 笔记

这篇博客详细探讨了斐波那契数列膜一个数的循环节长度,重点介绍了膜质数p的情况,包括有二次剩余和无二次剩余两种情况,并引用了珂朵莉定理进行分析。通过质因数分解和循环节长度的计算方法,帮助读者理解如何求解斐波那契数列的循环节。
摘要由CSDN通过智能技术生成

博客观赏效果更佳

这篇是比较具体的吧…很多证明网络上别的博客是没有的,只有一个结论。还有一篇博客用了很多复杂的东西里证明,虽然我能勉强看懂,但是很多人珂能看不懂。这篇也许算一个适中的了,容易理解些,但是证明少些。

如果您有更好的证明,或者能补全我没有的证明,也很感谢了。

正片开始

关于斐波那契数列,大家应该都不陌生。 f 1 = 1 , f 2 = 1 , f n = f n − 1 + f n − 2 f_1=1,f_2=1,f_n=f_{n-1}+f_{n-2} f1=1,f2=1,fn=fn1+fn2。斐波那契循环节,就是求斐波那契数列膜一个数的循环节长度。假设这个膜数为 m m m。那么以下的式子,如果没有说明,都是膜 m m m意义下的。

一些简单的变换

设斐波那契数列膜 m m m的循环节长度为 l ( m ) l(m) l(m)。形式化地, m m m为最小的满足 f i = 0 , f i + 1 = 1 f_i=0,f_{i+1}=1 fi=0,fi+1=1整数。而且,如果存在 n n n满足 f n = 0 , f n + 1 = 1 f_n=0,f_{n+1}=1 fn=0,fn+1=1,那么 n n n m m m的正整数倍。我们管这个叫珂朵莉的定义式

我们把 m m m质因数分解成 a 1 p 1 a 2 p 2 a 3 . . . a k p k a_1^{p_1}a_2^{p_2}a_3...a_k^{p_k} a1p1a2p2a3...akpk的形式。对于一个 a p a^p ap,满足 l ( a p ) l(a^p) l(ap)= l ( a ) × a p − 1 l(a)\times a^{p-1} l(a)×ap1。然后 l ( m ) l(m) l(m),是每个 l ( a p ) l(a^p) l(ap)的最小公倍数的因数。我们管这个叫珂朵莉第一定理

那么接下来的部分,我们都是在求膜一个质数的循环节长度。

膜质数 p p p的循环节长度

特殊说明来了:以下的式子,如果没有第二个特殊说明,都是膜 p p p意义下的。

我们知道斐波那契数列有通项公式,你可以用特征方程,或者百度,必应和谷歌等方式证明这个公式:
5 = q \sqrt{5}=q 5 =q,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值