bzoj1127 & 洛谷3474 题解

该博客介绍了如何在一个n×n的矩阵中找到和在[k,2k]范围内的子矩阵。当题目只需找到满足条件的子矩阵时,可以使用简单策略。博主分享了思路,包括特殊情况的处理,以及当所有数都≤k且和>2k时的解法。文章还引用了老师Fuxey的解释,提供了问题的直观证明,并给出了求解过程。" 80905436,7789082,使用Three.js的ShapeGeometry创建二维字体,"['前端开发', 'JavaScript', '3D图形', 'Three.js库']

题意简述

请在一个n×nn\times nn×n的矩阵中选一个子矩阵,使得这个子矩阵的和在[k,2k][k,2k][k,2k]中.

x在[k,2k][k,2k][k,2k]中即x&gt;=kx&gt;=kx>=k&lt;=2k&lt;=2k<=2k,for 那些不知道什么是[][][]的同学。解释一下,在表示区间的时候,[[[]]]表示珂以取到,((()))表示取不到。如[1,9)[1,9)[1,9)之间的整数就是18,$(2,10]$之间的整数就是310).

数据

输入:
8 4
1 2 1 3
25 1 2 1
4 20 3 3
3 30 12 2
输出:
2 1 4 2
输入(这组是bzoj上盗的):
4 3
1 1 1
1 9 1
1 1 1
输出:
NIE

思路

首先题目只是让你找,并没有说一定要面积最大,开了SPJ,随便输出一个即可。这样就不用我们一定要考虑到所有情况了。而且,如果有单点>=k且<=2k,直接输出即可。(这样有10分

这十分,三分天注定,七分靠打拼,剩下90分,请看下集。

下集:
讲一下我们老师Fuxey巨佬的话:

如果一个矩阵中的所有数都&lt;=k&lt;=k<=k,且和&gt;2k&gt;2k>2k,那么我们一定珂以不断的切掉几行,要么就是切掉几行之后和就&gt;=&gt;=>=k且&lt;=2k&lt;=2k<=2k了,要么就是切的只剩一条,然后在一个一个从后往前切元素,然后和&gt;=k&gt;=k>=k&lt;=2k&lt;=2k<=2k

什么意思呢。。。我概括一下:
一个和&gt;=2k&gt;=2k>=2k并且每个数都&lt;=k&lt;=k<=k的子矩阵如果:

只有一行,一定有解

多行也一定珂以选出其中xxx行作为一个解。

。。。
(也没简洁到哪里去。。。稍微清楚了一点而已。。。)

简单的感性证明:
如果我们现在选了一个子矩阵,当前的和是<=k的,并且加一个元素就珂以>=k,那么加上这一个后,和=一个<=k的数+一个<=k的数,显然,和<=2k。

那现在只要悬线求出所有权值全部&lt;=k&lt;=k<=k的子矩形,找到只要一个&gt;=k&gt;=k>=k且全部元素&lt;k&lt;k<k的子矩阵,whilewhilewhile判断这个矩阵的大小是不是&gt;=2k&gt;=2k>=2k,如果是就不断切最上或最下的一条,直到切到和&lt;=2k&lt;=2k<=2k即可。由Fuxey巨佬的话得,我们是一定珂以找到解的。如果上面那个矩阵找不到,就输出NIE。(话说为什么要输出NIE呢。。。奇怪的波兰语。。。)

附录:为什么输出NIE。
我一开始怀疑NIE是无解的意思,就上百度翻译翻了一下"无解",发现是NIE+奇怪的东西。考虑只搜索"没有",果然,翻译结果就是"NIE"。如下图:

tmp.png

。。。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=2010;
int k,n,a[N][N],s[N][N];
int L[N][N],R[N][N],U[N][N];//悬线法的套路:(不知道去看我洛谷P1169的题解)

void read(int &x)//n很大,考虑快读,省下常数时间
{
    x=0;
    bool f=0;
    char c=getchar();
    while(c<'0' or c>'9') c=getchar(),f=(c=='-');
    while(c>='0' and c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    if (f) x=-x;
}
void Input()
{
    scanf("%d%d",&k,&n);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            read(a[i][j]);
        }
    }
}

void Build()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            s[i][j]=s[i][j-1]+s[i-1][j]-s[i-1][j-1]+a[i][j];
        }
    }//二维前缀和

    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if (a[i][j]<k)
            {
                U[i][j]=U[i-1][j]+1;
                L[i][j]=L[i][j-1]+1;//处理U,L
            }
        }
        for(int j=n;j>=1;j--)
        {
            if (a[i][j]<k)
            {
                R[i][j]=R[i][j+1]+1;//处理R
            }
        }
        //L和U都是1~n枚举j,所以写在一块
        //注意不能和j写一块!!!

        for(int j=1;j<=n;j++)
        {
            if (U[i][j]>1)
            {
                L[i][j]=min(L[i-1][j],L[i][j]);
            }
        }
        for(int j=n;j>=1;j--)
        {
            if (U[i][j]>1)
            {
                R[i][j]=min(R[i-1][j],R[i][j]);
            }
        }//继承上一行的结果
        //注意:此处L,R用的是长度写法,继承的时候两个都是取min。如果是点编号写法的话应该是l取max,r取min。只要记住一句话就够了:"l更右,r更左。"
    }
}

int calc(int x1,int y1,int x2,int y2)//求点(x1,y1)到(x2,y2)的和
{
    return s[x2][y2]-s[x1-1][y2]+s[x1-1][y1-1]-s[x2][y1-1];
}
void Solve()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if (a[i][j]>=k and a[i][j]<=2*k)//特判一个点,这样10分
            {
                printf("%d %d %d %d\n",j,i,j,i);
                return;
            }
        }
    }

    int l,r,u,d;
    l=r=u=d=0;//初始都是0

    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if (a[i][j]<=k and calc(i-U[i][j]+1,j-L[i][j]+1,i,j+R[i][j]-1)>=k)
            //找一个和>=k并且a[i][j]<=k的子矩阵
            {
                l=j-L[i][j]+1;
                r=j+R[i][j]-1;
                u=i-U[i][j]+1;
                d=i;
                break;
            }
        }
    }

    if (l==0)//理论上,如果有解,l一定不会是0。
    {
        puts("NIE");
        return;
    }

    while(calc(u,l,d,r)>2*k)//不断切直到和<=2*k
    //由Fuxey的话知,这一定珂以找到解
    {
        if (d>u)//说明现在还是多行的情况
        {
            if (calc(u,l,d-1,r)<k)
            //如果满足这个条件说明d-1之前都要切掉,那可怜的子矩阵就只剩一行了。。。
            {
                u=d;
            }
            else//如果是这种情况就一定不能取d这一行了
            {
                d--;
            }
        }
        else//这是只剩一行的情况。
        {
            r--;
        }
    }
    printf("%d %d %d %d\n",l,u,r,d);
}
main()
{
    Input();
    Build();
    Solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值