bzoj1127 [POI2008]KUP

10 篇文章 0 订阅

Description


给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k]

n<2000
1<=k<=10^9
每个价格都是不大于2*10^9的非负整数

Solution


容易想到先把>2k的格子排除
显然那些本来就满足的单个格子可以直接输出
那么剩下的就是< k的格子了,相当于从01矩阵中找一个满足和>=k的、全为1的最大矩形,上单调栈维护单调不减即可

当k<=sum<=2k时,这是一个合法答案
当sum>2k时,由于每个格子都< k,我们必定可以删掉一行或者一列得到合法答案,即答案一定是找到最大矩形的子矩阵

Code


#include <stdio.h>
#include <string.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

typedef long long LL;
const int N=2005;

LL rc[N][N],a[N];
LL tot[N][N];
LL n,m;
int stack[N],top;

LL cal(int a,int b,int c,int d) {
    return tot[c][d]-tot[a-1][d]-tot[c][b-1]+tot[a-1][b-1];
}

bool output(int a,int b,int c,int d) {
    int tmp=cal(a,b,c,d);
    if (tmp<m) return false;
    if (tmp>=m&&tmp<=m*2) {
        printf("%d %d %d %d\n", b,a,d,c);
        return true;
    }
    if (d-b>c-a) {
        if (output(a+1,b,c,d)) return true;
        if (output(a,b+1,c,d)) return true;
        if (output(a,b,c-1,d)) return true;
        if (output(a,b,c,d-1)) return true;
    } else {
        if (output(a,b,c-1,d)) return true;
        if (output(a,b,c,d-1)) return true;
        if (output(a+1,b,c,d)) return true;
        if (output(a,b+1,c,d)) return true;
    }
    return false;
}

int main(void) {
    scanf("%lld%lld",&m,&n);
    rep(i,1,n) {
        rep(j,1,n) {
            scanf("%d",&rc[i][j]);
            if (rc[i][j]>=m&&rc[i][j]<=m*2) {
                printf("%d %d %d %d\n", j,i,j,i);
                return 0;
            }
            tot[i][j]=tot[i-1][j]+tot[i][j-1]+rc[i][j]-tot[i-1][j-1];
        }
    }
    rep(j,1,n) {
        rep(i,1,n) {
            if (rc[j][i]<m) a[i]++;
            else a[i]=0;
        }
        top=0;
        rep(i,1,n) {
            while (top>0&&a[stack[top]]>=a[i]) {
                if (output(j-a[stack[top]]+1,stack[top-1]+1,j,i-1)) {
                    // solve(j-a[stack[top]]+1,stack[top-1]+1,j,i-1);
                    return 0;
                }
                top--;
            }
            stack[++top]=i;
        }
        while (top>0) {
            if (output(j-a[stack[top]]+1,stack[top-1]+1,j,n)) {
                // solve(j-a[stack[top]]+1,stack[top-1]+1,j,n);
                return 0;
            }
            top--;
        }
    }
    puts("NIE");
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值