【可视化1-初步认识】使用Python中matplotlib.pyplot库绘制 折线图、柱状图、散点图、直方图

本文介绍了如何使用Python的matplotlib.pyplot库来创建折线图、柱状图、散点图和直方图,包括数据准备、基本绘制方法以及各种图形的样式定制。
摘要由CSDN通过智能技术生成

在这篇文章中,我们将初步学习如何使用Python 绘制折线图、柱状图、散点图和直方图

初识matplotlib.pyplot

在使用之前需要首先导入库,按照通用惯例简写为plt

import matplotlib.pyplot as plt

一、折线图

折线图的创建是通过不同的点连接实现

1.创建横纵坐标X,Y

首先需要定义横坐标的值和纵坐标的值

x=[1,2,3,4]
y=[2,3,4,5]

注意的是,x和y可以存放在多种类型中,不止是列表

#列表
x_list = ['a', 'b', 'c']
y_list = [1, 2, 3]

#元组
x_tuple = ('a', 'b', 'c','d')
y_tuple = (1, 2, 3, 4)

#矩阵
x_array = np.array(['a', 'b', 'c'])
y_array = np.array([1, 2, 3])

#pandas
x_series = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

#字典
x_dict = {'a': 1, 'b': 2, 'c': 3}

可以是字符也可以是数值,如果是字符的话就会类似于柱状图一样,按顺序对应一个Y轴的值,然后连线

2.使用plt.plot()开始绘制


在读取x,y之后,我们就可以开始绘制图形了

plt.plot(x,y)

其中只需要将x,y填入函数中,即可绘制出折线图。

例:

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
plt.plot(x, y, color='blue', linestyle='--', linewidth=2, marker='o', markersize=5,
         markeredgecolor='red', markeredgewidth=2, markerfacecolor='yellow', label='Line 1')

其中后面的为样式的设置,暂时可以不用填,系统会给出默认设置

注意,如果需要图形在编程软件中展示,则需要添加展示函数

plt.show()

此时我们就得到了一个折线图形。
在这里插入图片描述

关于这个图形,有很多美化的效果,接下来是如何修改样式。

3.修改线条的样式

指定线条的颜色
plt.plot(x,y,color='yellow')
#其中color可以简写为 
c='颜色'

#颜色只需要填入色彩的名称,也可以简写为一个字母
c='y'

#也可以填入16进制的RGB代码
color='#008000'
指定线条种类
plt.plot(x,y,linestyle='--')

#其中 linestyle 可以简写为
ls='--'

#不同符号代表着不同的线条类型
'-'实线、'--'虚线、'-.'点划线、':'点线
指定线条粗细
plt.plot(x,y,linewidth='float')

#其中 linewidth 可以简写为
lw='float'

#只需要填写具体浮点数值即可

4.修改点的样式

点的形状

默认不设置的情况下,点不会单独显示

plt.plot(x,y,marker='o')

#不同的符号代表着不同的点的样子
'o'圆形、's'正方形、'^'上三角形 等
点的内部样式

同理,只需要添加 xxx=xxx即可添加额外需求

markersize (ms) ='xxx' #设置标记的大小。

markeredgecolor (mec)='xxx' #标记边缘的颜色。

markeredgewidth (mew) ='xxx' #标记边缘的宽度。

markerfacecolor (mfc) ='xxx' #标记内部的颜色。

#使用方法和上面一样,填写颜色和数值即可

透明度设置

alpha:设置线条和标记的透明度,一个0到1之间的浮点数,其中0完全透明,1完全不透明。

简便写法

有时候为了方便,我们可以只有一个字符表示线条和点

第一部分是线型,如’-‘表示实线,’–‘表示虚线,’-.‘表示点划线,’:‘表示点线。
第二部分是标记,如’o’表示圆圈,’^'表示上三角形,等等。
第三部分是颜色,如’b’表示蓝色,'g’表示绿色,'r’表示红色

#例
plt.plot(x,y,'--ob')

表示绘制一个 线条为虚线、点为圆圈、线条为蓝色

二、柱状图

1.创建 柱子、高度 X,Y

和折线图一样,也需要一个X和Y

一般来说,柱状图的X是一个字符而不是数据,它代表着这个柱子的名称

import matplotlib.pyplot as plt

categories = ['Category A', 'Category B', 'Category C', 'Category D']
values = [23, 45, 56, 78]

plt.bar(categories, values, width=0.5, color=['blue', 'green', 'red', 'purple'], edgecolor='black', linewidth=1, alpha=0.7, label='Values')

plt.show()

在这里插入图片描述

2.修改柱子的各种样式

width: 条形的宽度,默认值是0.8。这个值可以调整,以控制条形的宽度。

bottom: 条形的起始位置的Y坐标,默认是0。通过调整这个参数,你可以改变条形的基线。

也就是说,可以通过改变底部起始的位置,实现数值叠加

这里我们将底部位置改为原来柱子的高度,实现了在原来的基础上叠加的效果。

在这里插入图片描述

align: 条形与x坐标的对齐方式。可选值有’center’(默认)和’edge’。'center’将条形中心对齐到x坐标,而’edge’将条形的左边缘对齐到x坐标。

如图 align='edge’后的结果
在这里插入图片描述

color: 条形的填充颜色。这可以是单个颜色或一组颜色,用于为每个条形指定颜色。

edgecolor: 条形边缘的颜色。同样,可以是单个颜色或颜色的序列。

linewidth: 条形边缘的线宽。可以是单个数值或数值的序列。

tick_label: 用作条形的刻度标签的序列。这些标签将显示在X轴下方,对应每个条形。

注意,如果你已经将X设置为具体的值,就无需使用tick_label,X将作为下方的标签

将X设为数字,tick_label设为标签,此时X就代表着柱子的位置。如果想要同时在一张图中显示两组数据比较。只需要将另一组数据的值进行增加以达到偏移效果

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(4)

data1 = [3, 7, 2, 5]
data2 = [4, 3, 8, 6]

width = 0.35

plt.bar(x, data1, width, tick_label=['a','b','c','d'])
plt.bar(x+width, data2, width, tick_label=['a','b','c','d'])

plt.show()

在这里插入图片描述

三、散点图

既然已经学会了折线图和柱状图,那么接下来各种图形应该是手到擒来的

1.绘制散点图

import matplotlib.pyplot as plt

x = [5, 20, 15, 25, 10]
y = [10, 25, 20, 10, 30]

plt.scatter(x, y, s=100, c='red', marker='o', alpha=0.5, edgecolor='black')

plt.show()

在这里插入图片描述

和折线图中的点一样,拥有着同样样式,设置一样,但是由于它只生成点,无需使用 marker+color(在折线图中点的颜色大小为 markersize、makercolor)

四、直方图

直方图类似于柱状图,只不过纵坐标显示的是频次,而不是具体的值。

1.绘制直方图

import matplotlib.pyplot as plt
import numpy as np

data = np.random.randn(1000)

plt.hist(data, bins=30, color='blue', alpha=0.7)

plt.show()

在这里插入图片描述

在这个代码中,使用Numpy创建了一个符合正态分布的1000个数据。

将创建的数据绘制,data就是我们的数据

2.直方图的样式

bins代表着有多少个箱子

假如最大值为100,最小值为0。bins我们假设为10

那么一共有
Max − Min bins = 柱子数量 \frac{\text{Max} - \text{Min}}{\text{bins}} = \text{柱子数量} binsMaxMin=柱子数量
也就是
100 − 0 10 = 10 \frac{100 - 0}{10} = 10 101000=10
可以根据自己需要去设置bins的值

density=True 表示直方图将显示密度而不是计数。

原来的纵坐标显示的是具体有多少个,而现在代表着占比多少
True代表启用密度,默认是计数。默认为False,不用单独设置

cumulative=False 指直方图为积累还是单纯计数

如果是True,则代表右侧的柱子会加上之前的数量,也就是说,最后一个柱子就是最大值,图像呈现为逐渐上升

默认为False,不用单独设置
在这里插入图片描述

histtype='bar’设定直方图的形状

bar为传统柱形,和柱状图一样。
barstacked代表着堆叠图形。也就是说,如果出现两组直方图在同一个图里面,他们会共享一个坐标,数据值相同的会重叠。如果采用bar,存在两个图形的时候,会自动将一个坐标分为两部分,两组数据并列比较。
step只有周围的线条,而中间并不会填充颜色。

align=‘mid’ 设置直方图的对齐方式

这里指定每个箱子的中心应该与它表示的数值区间的中心对齐。

此外还有,‘left’、‘right’ 代表柱子往左边界和有边界对齐

color=‘blue’
指定箱子的填充颜色

edgecolor=‘black’
指定箱子边缘的颜色

如有问题请多多指教,感谢您的阅读
下一章将讲解更多的图形以及一个完整图形需要的内容

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值