CodeForces 782B - The Meeting Place Cannot Be Changed

探讨了在一条直线上,如何计算使n个人同时到达同一位置所需的最短时间。通过二分查找算法确定目标集结点,考虑每个人的初始位置和移动速度,最终得出最小集结时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

description

The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.

At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.

You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.

Input

The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.

The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.

The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.

Output

Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.

Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if holds.

Examples

Input

4
           5 10 3 2
           2 3 2 4

Output

1.400000000000

Note

In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.

题意:

一条线上有n个人,每一个人有有一个初始坐标Xi和最大行走速度Vi,如果这些人都走到同一点,所用的最小时间是多少

分析:二分答案

 从坐标上找到其中点作为目标集结点,求出每个人都该点所耗费的最小时间,这些人中所用时间最大的那个人为本次集结的最小时间,判断此人所在的坐标与集结点的位置关系,如果某一边的最大时间比较大的话,坐标就要向那一边偏移,重复此过程就可不断逼近真正的集结点,而此时所用的时间即为答案。

优化:

可先对数据进行排序,从而易得出左右坐标边界,精度误差保证在1e-6即可

代码:

#include<iomanip>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 6e4 + 5;
int n;
double t;

struct Node
{
    int x;
    int v;
    bool operator<(const Node &tmp)
    {
        if (tmp.x > this->x)
            return true;
        else if (tmp.x < this->x)
            return false;
        else
            if (tmp.v > this->v)
                return true;
        return false;
    }
}T[N];

int Check(double X)
{
    double min = 0.0;
    double loc;
    for (int i = 0; i < n; i++) {
        t = (X - T[i].x) / T[i].v;
        if (min < fabs(t)) {
            min = t;
            loc = T[i].x;
        }
    }
    return loc > X;
}
double solve()
{    
    double left = T[0].x;
    double right = T[n - 1].x;
    double mid;

    while (right - left > 1e-7) {
        mid = (left + right) / 2.0;
        if (Check(mid))//如果在右边
            left = mid;
        else
            right = mid;
    }
    double ans = 0;
    for (int i = 0; i < n; i++)
        ans = max(ans, fabs(mid - T[i].x) / T[i].v);
    return ans;
}
int main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> T[i].x;
    for (int i = 0; i < n; i++)
        cin >> T[i].v;
    sort(T, T + n);
    
    cout << setiosflags(ios::fixed) << setprecision(12) << solve() << endl;
    return 0;
}

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值