description
The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.
At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.
You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
Input
The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.
The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.
The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.
Output
Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.
Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if holds.
Examples
Input
4
5 10 3 2
2 3 2 4
Output
1.400000000000
Note
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
题意:
一条线上有n个人,每一个人有有一个初始坐标Xi和最大行走速度Vi,如果这些人都走到同一点,所用的最小时间是多少
分析:二分答案
从坐标上找到其中点作为目标集结点,求出每个人都该点所耗费的最小时间,这些人中所用时间最大的那个人为本次集结的最小时间,判断此人所在的坐标与集结点的位置关系,如果某一边的最大时间比较大的话,坐标就要向那一边偏移,重复此过程就可不断逼近真正的集结点,而此时所用的时间即为答案。
优化:
可先对数据进行排序,从而易得出左右坐标边界,精度误差保证在1e-6即可
代码:
#include<iomanip>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 6e4 + 5;
int n;
double t;struct Node
{
int x;
int v;
bool operator<(const Node &tmp)
{
if (tmp.x > this->x)
return true;
else if (tmp.x < this->x)
return false;
else
if (tmp.v > this->v)
return true;
return false;
}
}T[N];int Check(double X)
{
double min = 0.0;
double loc;
for (int i = 0; i < n; i++) {
t = (X - T[i].x) / T[i].v;
if (min < fabs(t)) {
min = t;
loc = T[i].x;
}
}
return loc > X;
}
double solve()
{
double left = T[0].x;
double right = T[n - 1].x;
double mid;while (right - left > 1e-7) {
mid = (left + right) / 2.0;
if (Check(mid))//如果在右边
left = mid;
else
right = mid;
}
double ans = 0;
for (int i = 0; i < n; i++)
ans = max(ans, fabs(mid - T[i].x) / T[i].v);
return ans;
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
cin >> T[i].x;
for (int i = 0; i < n; i++)
cin >> T[i].v;
sort(T, T + n);
cout << setiosflags(ios::fixed) << setprecision(12) << solve() << endl;
return 0;
}