最大子序和

本文解析了如何使用动态规划解决最大子序列和问题,通过实例展示了如何利用递推公式f[i]=nums[i]+max(0,f[i-1])计算以每个元素结尾的连续子数组的最大和,最终返回整个数组的最大子序列和。
摘要由CSDN通过智能技术生成

最大子序和

/*
f[i]: 以第i个元素结尾的连续子数组的和
f[i] = max(num[i], num[i] + num[i - 1]....)
	 = num[i] + max(0, num[i - 1], num[i - 1] + nums[i -2]...)
f[i - 1] = max(num[i - 1], num[i - 1] + num[i - 2]....)
所以动态转移方程:f[i] = nums[i] + max(0, f[i - 1]);
*/
class Solution {
    public int maxSubArray(int[] nums) {
        int[] f = new int[nums.length + 1];
        Arrays.fill(f, Integer.MIN_VALUE);
        for (int i = 1; i <= nums.length; i ++) {
            f[i] = nums[i - 1];
            if (f[i - 1] > 0) f[i] = Math.max(f[i], f[i - 1] + nums[i - 1]);
        }        
        int res = Integer.MIN_VALUE;
        for (int i = 1; i <= nums.length; i ++) res = Math.max(res, f[i]);
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值