重要的python库
1. Numpy
Numpy是python科学计算的基础包,提供以下功能:
(1)多维数组对象ndarray(快速高效)
(2)函数(对数组执行元素级计算、直接对数组执行数学运算)
(3)工具(读写硬盘上基于数组的数据集)
(4)线性代数运算、傅里叶变换、随机数生成
(5)工具(将C、C++、Fortran代码集成到Python)
数据分析方面:作为算法之间传递数据的容器。
优点:
对于数值型数据,Numpy数组在存储和处理数据时,要比内置的python数据结构高效的多。
由低级语言编写的库可以直接操作Numpy数组中的数据,无需进行任何复制工作。
2. pandas
提供了快捷处理结构化数据的大量的数据结构和函数
常用DataFrame
3. matplotlib
绘制数据图表
交互式数据绘图环境
4. Ipython
一个增强的Python shell,主要用于交互式数据处理和利用matplotlib对数据进行可视化处理。
5. Scipy
解决科学计算中各种标准问题域的包的集合
scipy.integrate:数值积分例程和微分方程求解器。
scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。
scipy.optimize:函数优化器(最小化器)以及根查找算法。
scipy.signal:信号处理工具。
scipy.sparse:稀疏矩阵和稀疏线性矩阵系统求解器。
scipy.special:SPECFUN的包装器。
scipy.stats:标准连续和离散概率分布、各种统计检验方法,以及更好的描述统计方法。
scipy.wave:利用内联c++代码加速数组计算的工具。
书上代码和数据文件等材料:
https://github.com/wesm/pydata-book
惯例:
import numpy as np
import pandas as pd
import matplotlib as plt