一根长度为1米的木棒上有若干只蚂蚁在爬动。它们的速度为每秒一厘米或静止不动,方向只有两种,向左或者向右。如果两只蚂蚁碰头,则它们立即交换速度并继续爬动。三只蚂蚁碰头,则两边的蚂蚁交换速度,中间的蚂蚁仍然静止。如果它们爬到了木棒的边缘(0或100厘米处)则会从木棒上坠落下去。在某一时刻蚂蚁的位置各不相同且均在整数厘米处(即1,2,3,…99厘米),有且只有一只蚂蚁A速度为0,其他蚂蚁均在向左或向右爬动。给出该时刻木棒上的所有蚂蚁位置和初始速度,找出蚂蚁A从此时刻到坠落所需要的时间。
输入
第一行包含一个整数表示蚂蚁的个数N(2<=N<=99),之后共有N行,每一行描述一只蚂蚁的初始状态。每个初始状态由两个整数组成,中间用空格隔开,第一个数字表示初始位置厘米数P(1<=P<=99),第二个数字表示初始方向,-1表示向左,1表示向右,0表示静止。
输出
蚂蚁A从开始到坠落的时间。若不会坠落,输出“Cannot fall!”
输入样例
Copy
2
44 0
41 1
2
13 0
63 1
4
56 0
64 -1
85 -1
47 1
输出样例
Copy
59
Cannot fall!
85
#include <bits/stdc++.h>
using namespace std;
struct ant
{
int x;
int d;
};
bool cmp(ant a,ant b)
{
return a.x<b.x;
}
int main()
{
int n;
while(cin>>n)
{
int k=0;
ant a[105],b[105];
int count_l=0,count_r=0,flag=0;
for(int i=0;i<n;i++)
{
cin>>a[i].x>>a[i].d;
}
sort(a,a+n,cmp);
for(int i=0;i<n;i++)
{
if(!flag&&a[i].d==1)
{
count_l++;
b[k++]=a[i];
}
if(a[i].d==0)
{
flag=1;
}
if(flag&&a[i].d==-1)
{
count_r++;
b[k++]=a[i];
}
}
// cout<<count_l<<" "<<count_r<<endl;
if(count_l==count_r) cout<<"Cannot fall!"<<endl;
else if(count_l>count_r)
cout<<100-b[count_l-count_r-1].x<<endl;
else
cout<<b[2*count_l].x<<endl;
}
return 0;
}
参考了下网上的解析,期间,我想用vector来存储蚂蚁,方便删改,后开看到网上用两个数组来解决,第一个数组a[]用来存放最初的数组,b[]用来存放删改后的数组(即合格的蚂蚁)。
这个问题有点类似于物理中的动量问题,不必考虑的太仔细,要考虑静止蚂蚁是否能够掉落,以及什么时候掉落,只需要考虑此蚂蚁左边向右走的蚂蚁、右边向左走的蚂蚁即可(我称其为合格蚂蚁)。
如果左边蚂蚁与右边蚂蚁数目相等,则无法掉落。如果左>右,则会从右边掉落。如果右>左,则会从左边掉落。就是最后一个撞到这个蚂蚁A的蚂蚁B(左右两边抵消后离蚂蚁A最近的一个蚂蚁)撞了蚂蚁A之后,蚂蚁A会向反方向走并掉落。其掉落时间则为,从蚂蚁B的位置走向向反方向末端所需要的时间,这里也就是距离。