高级特性(切片 /迭代 /列表生成式 /生成器 /迭代器)

切片(list,tuple,字符串)

L[0:3]从索引0开始取,直到索引3为止,但不包括索引3。
如果第一个索引是0,还可以省略:L[:3]
记住倒数第一个元素的索引是-1。L[-2:] L[-2:-1]
前10个数,每两个取一个:L[:10:2]
所有数,每5个取一个:L[::5]
只写[:]就可以原样复制一个list:L[:]

迭代

只要是可迭代对象,无论有无下标,都可以迭代。(list,string,dict…)
比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)

迭代value,可以用for value in d.values()
同时迭代key和value,可以用for k, v in d.items()

字符串:

>>> for ch in 'ABC':
...     print(ch)

判断一个对象是可迭代对象:通过collections模块的Iterable类型判断

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

列表生成式

生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

生成[1x1, 2x2, 3x3, …, 10x10]

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

使用两层循环,可以生成全排列

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

列出当前目录下的所有文件和目录名:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

一个list中所有的字符串变成小写

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

使用内建的isinstance函数可以判断一个变量是不是字符串:

>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
True
>>> isinstance(y, str)
False
L2 = [s.lower() for s in L1 if isinstance(s,str)]

生成器(节省内存)

这种一边循环一边计算的机制,称为生成器:generator

>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

通过next()函数获得generator的下一个返回值,但一般不使用>>> next(g)
直到计算到最后一个元素之后,抛出StopIteration的错误

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)

斐波拉契数列用列表生成式写不出来,用函数把它打印出来却很容易,(输出斐波那契数列的前N个数):

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

要把fib函数变成generator,只需要把print(b)改为yield b:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator。(定义generator的另一种方法)
generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行
next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)

如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
next(f)
>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

生成杨辉三角:

def triangles():
    L=[1]
    while True:
        yield L
        L=[1] + [L[i]+L[i+1] for i in range(len(L)-1)] + [1]
    

小结
可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。
generator函数的“调用”实际返回一个generator对象

迭代器

可以直接作用于for循环的数据类型有以下几种:
(1)集合数据类型,如list、tuple、dict、set、str等;
(2)generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象Iterable
可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
被next()函数调用并不断返回下一个值的对象称为迭代器Iterator
可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值