前言
大家好, 这里是Yve菌, 今天给大家带来一期CAS的相关知识
一、什么是CAS
CAS(Compare and Swap)名为比较交换, 通常是指一种原子操作: 针对一个变量,首先比较它的内存值与某个期望值是否相同,如果相同,就给它赋一个新值。 我们将原本的内存值举例为A, 期望值举例为B, 新值举例为C, CAS操作就是把A和B进行对比, 如果 A==B则将A的值替换为C; 如果A和B不相等, 那就说明有其他业务对数据A进行过修改, 于是A的值则不会更新为C.
我们通过上面的解释可以看出CAS是一种以乐观锁的思想实现的, 但是他本身却没有用到任何锁, 相对于synchronized悲观锁来说效率会高很多. Java原子类中的递增操作就通过CAS自旋实现的。
二、CAS的应用
在 Java 中,CAS 操作是由 Unsafe 类提供支持的,该类定义了三种针对不同类型变量的 CAS 操作,如图
它们都是 native 方法,由 Java 虚拟机提供具体实现,这意味着不同的 Java 虚拟机对它们的实现可能会略有不同。
以 compareAndSwapInt 为例,Unsafe 的 compareAndSwapInt 方法接收 4 个参数,分别是:对象实例、内存偏移量、字段期望值、字段新值。该方法会针对指定对象实例中的相应偏移量的字段执行 CAS 操作。
public class CASTest {
public static void main(String[] args) {
Entity entity = new Entity();
Unsafe unsafe = UnsafeFactory.getUnsafe();
long offset = UnsafeFactory.getFieldOffset(unsafe, Entity.class, "x");
boolean successful;
// 4个参数分别是:对象实例、字段的内存偏移量、字段期望值、字段新值
successful = unsafe.compareAndSwapInt(entity, offset, 0, 3);
System.out.println(successful + "\t" + entity.x);
successful = unsafe.compareAndSwapInt(entity, offset, 3, 5);
System.out.println(successful + "\t" + entity.x);
successful = unsafe.compareAndSwapInt(entity, offset, 3, 8);
System.out.println(successful + "\t" + entity.x);
}
}
public class UnsafeFactory {
/**
* 获取 Unsafe 对象
* @return
*/
public static Unsafe getUnsafe() {
try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
return (Unsafe) field.get(null);
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
/**
* 获取字段的内存偏移量
* @param unsafe
* @param clazz
* @param fieldName
* @return
*/
public static long getFieldOffset(Unsafe unsafe, Class clazz, String fieldName) {
try {
return unsafe.objectFieldOffset(clazz.getDeclaredField(fieldName));
} catch (NoSuchFieldException e) {
throw new Error(e);
}
}
针对以上 entity.x 的 3 次 CAS 操作,分别试图将它从 0 改成 3、从 3 改成 5、从 3 改成 8。执行结果如下:
Atomic原子操作类
在J.U.C下的atomic包提供了一系列的操作简单,性能高效,并能保证线程安全的类去更新基本类型变量,数组元素,引用类型以及更新对象中的字段类型。atomic包下的这些类都是采用的是乐观锁策略去原子更新数据,在java中则是使用CAS操作具体实现。
- 基本类型:AtomicInteger、AtomicLong、AtomicBoolean;
- 引用类型:AtomicReference、AtomicStampedRerence、AtomicMarkableReference;
- 数组类型:AtomicIntegerArray、AtomicLongArray、AtomicReferenceArray
- 对象属性原子修改器:AtomicIntegerFieldUpdater、AtomicLongFieldUpdater、AtomicReferenceFieldUpdater
- 原子类型累加器(jdk1.8增加的类):DoubleAccumulator、DoubleAdder、LongAccumulator、LongAdder、Striped64
以AtomicInteger为例总结常用的方法:
//以原子的方式将实例中的原值加1,返回的是自增前的旧值;
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
//getAndSet(int newValue):将实例中的值更新为新值,并返回旧值;
public final boolean getAndSet(boolean newValue) {
boolean prev;
do {
prev = get();
} while (!compareAndSet(prev, newValue));
return prev;
}
//incrementAndGet() :以原子的方式将实例中的原值进行加1操作,并返回最终相加后的结果;
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
//addAndGet(int delta) :以原子方式将输入的数值与实例中原本的值相加,并返回最后的结果;
public final int addAndGet(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
}
测试
public class AtomicIntegerTest {
static AtomicInteger sum = new AtomicInteger(0);
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
Thread thread = new Thread(() -> {
for (int j = 0; j < 10000; j++) {
// 原子自增 CAS
sum.incrementAndGet();
//TODO
}
});
thread.start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(sum.get());
}
}
其中incrementAndGet()方法就是通过CAS自增实现, 如果CAS失败会一直自旋直到成功++. 在高并发情况下, 这样一直失败自旋会导致性能问题.
在java中还存在一个LongAdder类, LongAdder引入的初衷就是为了解决高并发环境下AtomicInteger,AtomicLong的自旋瓶颈问题。
LongAdder类
public class LongAdderTest {
public static void main(String[] args) {
testAtomicLongVSLongAdder(10, 10000);
System.out.println("==================");
testAtomicLongVSLongAdder(10, 200000);
System.out.println("==================");
testAtomicLongVSLongAdder(100, 200000);
}
static void testAtomicLongVSLongAdder(final int threadCount, final int times) {
try {
long start = System.currentTimeMillis();
testLongAdder(threadCount, times);
long end = System.currentTimeMillis() - start;
System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);
System.out.println("结果>>>>>>LongAdder方式增加计数" + (threadCount * times) + "次,共计耗时:" + end);
long start2 = System.currentTimeMillis();
testAtomicLong(threadCount, times);
long end2 = System.currentTimeMillis() - start2;
System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);
System.out.println("结果>>>>>>AtomicLong方式增加计数" + (threadCount * times) + "次,共计耗时:" + end2);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
static void testAtomicLong(final int threadCount, final int times) throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
AtomicLong atomicLong = new AtomicLong();
for (int i = 0; i < threadCount; i++) {
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < times; j++) {
atomicLong.incrementAndGet();
}
countDownLatch.countDown();
}
}, "my-thread" + i).start();
}
countDownLatch.await();
}
static void testLongAdder(final int threadCount, final int times) throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
LongAdder longAdder = new LongAdder();
for (int i = 0; i < threadCount; i++) {
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < times; j++) {
longAdder.add(1);
}
countDownLatch.countDown();
}
}, "my-thread" + i).start();
}
countDownLatch.await();
}
}
经过测试我们得出结果: 线程数越多,并发操作数越大,LongAdder的优势越明显
LongAdder设计思路
AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value变量其实是一个热点,也就是N个线程竞争一个热点。LongAdder的基本思路就是分散热点,将value值分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。如果要获取真正的long值,只要将各个槽中的变量值累加返回。
在LongAdder内部有一个base变量和一个Cell[]数组:
base变量:非竞态条件下,直接累加到该变量上
Cell[]数组:竞态条件下,累加个各个线程自己的槽Cell[i]中
通过Cell数组对线程进行分流就可以高效的解决CAS失败自旋的问题.
三、CAS的缺陷
虽然CAS高效地解决了原子操作,但是还是存在一些缺陷的,主要表现在三个方面:
- 自旋 CAS 长时间地不成功,则会给 CPU 带来非常大的开销
- 只能保证一个共享变量原子操作
- ABA 问题
ABA问题
什么是ABA问题
CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。当有多个线程对一个原子类进行操作的时候,某个线程在短时间内将原子类的值A修改为B,又马上将其修改为A,此时其他线程不感知,还是会修改成功。
举个例子: 有一辆共享单车放在路边, 一段时间过后这个单车依然在这里, 但是他却是可能被人骑走之后又放回到了原地.
我们测试一下:
@Slf4j
public class ABATest {
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(1);
new Thread(()->{
int value = atomicInteger.get();
log.debug("Thread1 read value: " + value);
// 阻塞1s
LockSupport.parkNanos(1000000000L);
// Thread1通过CAS修改value值为3
if (atomicInteger.compareAndSet(value, 3)) {
log.debug("Thread1 update from " + value + " to 3");
} else {
log.debug("Thread1 update fail!");
}
},"Thread1").start();
new Thread(()->{
int value = atomicInteger.get();
log.debug("Thread2 read value: " + value);
// Thread2通过CAS修改value值为2
if (atomicInteger.compareAndSet(value, 2)) {
log.debug("Thread2 update from " + value + " to 2");
// do something
value = atomicInteger.get();
log.debug("Thread2 read value: " + value);
// Thread2通过CAS修改value值为1
if (atomicInteger.compareAndSet(value, 1)) {
log.debug("Thread2 update from " + value + " to 1");
}
}
},"Thread2").start();
}
}
在这里Thread1不知道Thread2对value进行过的操作, 误认为value=1没有修改过
ABA解决方案
Java提供了相应的原子引用类AtomicStampedReference<V>
, 他是一种基于数据版本实现数据同步的机制,每次修改一次数据,版本就会进行累加。
测试:
@Slf4j
public class AtomicStampedReferenceTest {
public static void main(String[] args) {
// 定义AtomicStampedReference Pair.reference值为1, Pair.stamp为1
AtomicStampedReference atomicStampedReference = new AtomicStampedReference(1,1);
new Thread(()->{
int[] stampHolder = new int[1];
int value = (int) atomicStampedReference.get(stampHolder);
int stamp = stampHolder[0];
log.debug("Thread1 read value: " + value + ", stamp: " + stamp);
// 阻塞1s
LockSupport.parkNanos(1000000000L);
// Thread1通过CAS修改value值为3
if (atomicStampedReference.compareAndSet(value, 3,stamp,stamp+1)) {
log.debug("Thread1 update from " + value + " to 3");
} else {
log.debug("Thread1 update fail!");
}
},"Thread1").start();
new Thread(()->{
int[] stampHolder = new int[1];
int value = (int)atomicStampedReference.get(stampHolder);
int stamp = stampHolder[0];
log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);
// Thread2通过CAS修改value值为2
if (atomicStampedReference.compareAndSet(value, 2,stamp,stamp+1)) {
log.debug("Thread2 update from " + value + " to 2");
// do something
value = (int) atomicStampedReference.get(stampHolder);
stamp = stampHolder[0];
log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);
// Thread2通过CAS修改value值为1
if (atomicStampedReference.compareAndSet(value, 1,stamp,stamp+1)) {
log.debug("Thread2 update from " + value + " to 1");
}
}
},"Thread2").start();
}
}
测试结果:Thread1没有成功修改value
总结
以上就是CAS以及相关知识的总结, 如果这边文章能帮助到你, 就麻烦点个赞支持一下呗, 谢谢大家