Java 基于 数学 方程 表达式 动态验证码 生成与验证系统 简单实现

Java 基于 数学 方程 表达式 动态验证码 生成与验证系统 简单实现

数据分析案例

本文中使用 zhao-utils 和 mathematical-expression 实现了 解方程 生成验证码!

目录

1. 项目概述

本文介绍了一种基于数学表达式运算的新型验证码生成系统。该系统通过动态生成随机数学方程并将其渲染为图像验证码,结合精确的数学计算验证机制,有效阻止了自动化脚本和机器人的恶意访问。相较于传统文字/图形验证码,该方案具有更强的抗攻击性和更高的验证准确性。

2. 技术实现

2.1 核心架构

系统采用模块化设计,主要包含以下组件:

数学表达式引擎:使用mathematical-expression库动态生成和求解数学方程
图像生成器:通过zhao-utils库创建带干扰效果的验证码图像
验证逻辑:比对用户输入解与精确解的误差范围

2.2. 关键代码解析

关于更多方程求解器的信息,请查阅:https://blog.csdn.net/Liming07/article/details/147922124?fromshare=blogdetail&sharetype=blogdetail&sharerId=147922124&sharerefer=PC&sharesource=Liming07&sharefrom=from_link

// 数学表达式生成
SingletonEquationSolvingTwo instance = (SingletonEquationSolvingTwo) 
    Mathematical_Expression.getInstance(Mathematical_Expression.singleEquationSolving2);
EquationSolverExpression compile = instance.compile("0+x-0=500", false);

// 随机参数设置
compile.setKnownNumber(0, random.nextInt(100));
compile.setKnownNumber(2, random.nextInt(100));

// 验证码图像生成
BufferedImage image = captchaGenerator.generateCaptchaImage(explain, 20);
ImageMatrix parse = ImageMatrix.parse(ASIO.parseImageGetColorArray(image));
parse.show("res");

安全性分析

特征传统验证码数学验证码
生成方式固定模板动态随机生成
验证逻辑图像识别数学计算
抗OCR能力
用户友好度
实现复杂度

完整代码

import io.github.beardedManZhao.algorithmStar.operands.matrix.ImageMatrix;
import io.github.beardedManZhao.algorithmStar.utils.ASIO;
import io.github.beardedManZhao.mathematicalExpression.core.Mathematical_Expression;
import io.github.beardedManZhao.mathematicalExpression.core.calculation.number.SingletonEquationSolvingTwo;
import io.github.beardedManZhao.mathematicalExpression.core.container.CalculationNumberResults;
import io.github.beardedManZhao.mathematicalExpression.core.container.EquationSolverExpression;
import top.lingyuzhao.utils.CaptchaGenerator;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.Random;
import java.util.Scanner;

public class MAIN {

    public static void main(String[] args) {
        // 准备一个数组 用于标识背景的颜色组成
        final Color[] colors = {
                Color.white, Color.gray, Color.CYAN, Color.yellow, Color.blue, Color.green
        };
        // 准备随机器
        final Random random = new Random();
        // 创建生成器 这个生成器会生成 600 * 140 的图片,背景颜色为 6 种随机排列
        final CaptchaGenerator captchaGenerator = new CaptchaGenerator(600, 140, colors);

        // 准备一个方程
        SingletonEquationSolvingTwo instance = (SingletonEquationSolvingTwo) Mathematical_Expression.getInstance(Mathematical_Expression.singleEquationSolving2);
        EquationSolverExpression compile = instance.compile("0+x-0=500", false);
        try (final Scanner scanner = new Scanner(System.in)) {
            // 设置方程中的两个实数
            compile.setKnownNumber(0, random.nextInt(100));
            compile.setKnownNumber(2, random.nextInt(100));
            // 获取到方程表达式 并生成图片
            final String explain = compile.explain();
            // 生成图片 设置干扰程度为 20 ,表达式作为文本
            BufferedImage image = captchaGenerator.generateCaptchaImage(explain, 20);
            ImageMatrix parse = ImageMatrix.parse(ASIO.parseImageGetColorArray(image));
            // 展示图像
            parse.show("res");
            // 等待用户输入解
            System.out.print("请输入解: x = ");
            // 获取到用户输入的解
            double user = Double.parseDouble(scanner.nextLine());
            // 计算出真实的解
            CalculationNumberResults calculation = compile.calculation(false);
            // 查看误差是否在 0 到 1 之间
            if (Math.abs(user - calculation.getResult()) < 1) {
                System.out.println("验证通过!");
            } else {
                System.out.println("验证失败!");
            }
        } finally {
            captchaGenerator.close();
        }
    }
}

下面是运行效果
在这里插入图片描述

3. 优势特点

  • 动态不可预测性:每次生成的方程参数和图像特征均不同

  • 计算验证机制:避免了传统验证码被OCR破解的风险

  • 误差容忍设计:允许±1的误差范围,兼顾用户体验和准确性

  • 干扰增强技术:通过颜色矩阵变换和随机干扰线增加机器识别难度

4. 应用场景

该系统特别适用于以下场景:

  • 学术系统:防止自动化脚本刷课/考试

  • 金融平台:高安全需求的操作验证

  • 科研设备:实验室仪器访问控制

  • 在线教育:防止AI代做作业

5. 改进方向

  • 多模态验证:结合图形识别和数学计算

  • 自适应难度:根据用户行为动态调整方程复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值