/*
*Copyright(c) 2015,烟台大学计算机学院
*All rights reserved.
*文件名称:test.cpp
*作者:林莉
*完成日期:2015年10月09日
*版本:v1.0
*
*问题描述:利用sqstack.h中栈的基本运算,实现将一个中缀表达式转换为对应的后缀表达式的算法。
*输入描述:输入一个中缀表达式
*程序输出:后缀表达式的结果
*/
1.头文件:sqstack.h,包含定义顺序栈数据结构的代码、宏定义、要实现算法的函数的声明;
#ifndef SQSTACK_H_INCLUDED
#define SQSTACK_H_INCLUDED
#define MaxSize 100
typedef int ElemType;
typedef struct
{
ElemType data[MaxSize];
int top; //栈指针
} SqStack; //顺序栈类型定义
void InitStack(SqStack *&s); //初始化栈
void DestroyStack(SqStack *&s); //销毁栈
bool StackEmpty(SqStack *s); //栈是否为空
int StackLength(SqStack *s); //返回栈中元素个数——栈长度
bool Push(SqStack *&s,ElemType e); //入栈
bool Pop(SqStack *&s,ElemType &e); //出栈
bool GetTop(SqStack *s,ElemType &e); //取栈顶数据元素
void DispStack(SqStack *s); //输出栈
#endif // SQSTACK_H_INCLUDED
2.源文件:sqstack.cpp,包含实现各种算法的函数的定义
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include "sqstack.h"
void InitStack(SqStack *&s)
{
s=(SqStack *)malloc(sizeof(SqStack));
s->top=-1;
}
void DestroyStack(SqStack *&s)
{
free(s);
}
int StackLength(SqStack *s) //返回栈中元素个数——栈长度
{
return(s->top+1);
}
bool StackEmpty(SqStack *s)
{
return(s->top==-1);
}
bool Push(SqStack *&s,ElemType e)
{
if (s->top==MaxSize-1) //栈满的情况,即栈上溢出
return false;
s->top++;
s->data[s->top]=e;
return true;
}
bool Pop(SqStack *&s,ElemType &e)
{
if (s->top==-1) //栈为空的情况,即栈下溢出
return false;
e=s->data[s->top];
s->top--;
return true;
}
bool GetTop(SqStack *s,ElemType &e)
{
if (s->top==-1) //栈为空的情况,即栈下溢出
return false;
e=s->data[s->top];
return true;
}
void DispStack(SqStack *s) //输出栈
{
int i;
for (i=s->top;i>=0;i--)
printf("%c ",s->data[i]);
printf("\n");
}
3.测试函数:main.cpp,完成相关测试工作
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include "sqstack.h"
#define MaxOp 7
struct //设定运算符优先级
{
char ch; //运算符
int pri; //优先级
}
lpri[]= {{'=',0},{'(',1},{'*',5},{'/',5},{'+',3},{'-',3},{')',6}},
rpri[]= {{'=',0},{'(',6},{'*',4},{'/',4},{'+',2},{'-',2},{')',1}};
int leftpri(char op) //求左运算符op的优先级
{
int i;
for (i=0; i<MaxOp; i++)
if (lpri[i].ch==op)
return lpri[i].pri;
}
int rightpri(char op) //求右运算符op的优先级
{
int i;
for (i=0; i<MaxOp; i++)
if (rpri[i].ch==op)
return rpri[i].pri;
}
bool InOp(char ch) //判断ch是否为运算符
{
if (ch=='(' || ch==')' || ch=='+' || ch=='-'
|| ch=='*' || ch=='/')
return true;
else
return false;
}
int Precede(char op1,char op2) //op1和op2运算符优先级的比较结果
{
if (leftpri(op1)==rightpri(op2))
return 0;
else if (leftpri(op1)<rightpri(op2))
return -1;
else
return 1;
}
void trans(char *exp,char postexp[])
//将算术表达式exp转换成后缀表达式postexp
{
SqStack *opstack; //定义运算符栈
int i=0; //i作为postexp的下标
ElemType ch;
InitStack(opstack); //用初始化栈运算为栈分配空间,务必要做
Push(opstack, '=');
while (*exp!='\0') //exp表达式未扫描完时循环
{
if (!InOp(*exp)) //为数字字符的情况
{
while (*exp>='0' && *exp<='9') //判定为数字
{
postexp[i++]=*exp;
exp++;
}
postexp[i++]='#'; //用#标识一个数值串结束
}
else //为运算符的情况
{
GetTop(opstack, ch); //取得栈顶的运算符
switch(Precede(ch ,*exp))
{
case -1: //栈顶运算符的优先级低:进栈
Push(opstack, *exp);
exp++; //继续扫描其他字符
break;
case 0: //只有括号满足这种情况
Pop(opstack, ch); //将(退栈
exp++; //继续扫描其他字符
break;
case 1: //退栈并输出到postexp中
postexp[i++]=ch;
Pop(opstack, ch);
break;
}
}
} //while (*exp!='\0')
Pop(opstack, ch);
while (ch!='=')
//此时exp扫描完毕,退栈到'='为止
{
postexp[i++]=ch;
Pop(opstack, ch);
}
postexp[i]='\0'; //给postexp表达式添加结束标识
DestroyStack(opstack);
}
int main()
{
char exp[]="(56-20)/(4+2)"; //可将exp改为键盘输入
char postexp[200];
trans(exp,postexp);
printf("中缀表达式:%s\n",exp);
printf("后缀表达式:%s\n",postexp);
return 0;
}
运行结果:
知识点总结:
中缀表达式一般遵循“先乘除,后加减,从左到右计算,先括号内,后括号外”的规则。
后缀表达式已考虑了运算符的优先级,没有括号,只有运算数和运算符。
学习心得:
注意中缀表达式和后缀表达式的运算规则,然后利用相关应用完成转换。