第六周上机实践—项目5—后缀表达式

/*
 *Copyright(c) 2015,烟台大学计算机学院
 *All rights reserved.
 *文件名称:test.cpp
 *作者:林莉
 *完成日期:2015年10月09日
 *版本:v1.0
 *
 *问题描述:利用sqstack.h中栈的基本运算,实现将一个中缀表达式转换为对应的后缀表达式的算法。
 *输入描述:输入一个中缀表达式
 *程序输出:后缀表达式的结果
 */


1.头文件:sqstack.h,包含定义顺序栈数据结构的代码、宏定义、要实现算法的函数的声明;

 

#ifndef SQSTACK_H_INCLUDED
#define SQSTACK_H_INCLUDED

#define MaxSize 100
typedef int ElemType;
typedef struct
{
    ElemType data[MaxSize];
    int top;                //栈指针
} SqStack;                  //顺序栈类型定义

void InitStack(SqStack *&s);    //初始化栈
void DestroyStack(SqStack *&s);  //销毁栈
bool StackEmpty(SqStack *s);     //栈是否为空
int StackLength(SqStack *s);  //返回栈中元素个数——栈长度
bool Push(SqStack *&s,ElemType e); //入栈
bool Pop(SqStack *&s,ElemType &e); //出栈
bool GetTop(SqStack *s,ElemType &e); //取栈顶数据元素
void DispStack(SqStack *s);  //输出栈

#endif // SQSTACK_H_INCLUDED

2.源文件:sqstack.cpp,包含实现各种算法的函数的定义

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include "sqstack.h"

void InitStack(SqStack *&s)
{
    s=(SqStack *)malloc(sizeof(SqStack));
    s->top=-1;
}
void DestroyStack(SqStack *&s)
{
    free(s);
}
int StackLength(SqStack *s)  //返回栈中元素个数——栈长度
{
    return(s->top+1);
}
bool StackEmpty(SqStack *s)
{
    return(s->top==-1);
}
bool Push(SqStack *&s,ElemType e)
{
    if (s->top==MaxSize-1)    //栈满的情况,即栈上溢出
        return false;
    s->top++;
    s->data[s->top]=e;
    return true;
}
bool Pop(SqStack *&s,ElemType &e)
{
    if (s->top==-1)     //栈为空的情况,即栈下溢出
        return false;
    e=s->data[s->top];
    s->top--;
    return true;
}
bool GetTop(SqStack *s,ElemType &e)
{
    if (s->top==-1)         //栈为空的情况,即栈下溢出
        return false;
    e=s->data[s->top];
    return true;
}

void DispStack(SqStack *s)  //输出栈
{
    int i;
    for (i=s->top;i>=0;i--)
        printf("%c ",s->data[i]);
    printf("\n");
}


3.测试函数:main.cpp,完成相关测试工作

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include "sqstack.h"
#define MaxOp 7

struct  //设定运算符优先级
{
    char ch;   //运算符
    int pri;   //优先级
}
lpri[]= {{'=',0},{'(',1},{'*',5},{'/',5},{'+',3},{'-',3},{')',6}},
rpri[]= {{'=',0},{'(',6},{'*',4},{'/',4},{'+',2},{'-',2},{')',1}};

int leftpri(char op)    //求左运算符op的优先级
{
    int i;
    for (i=0; i<MaxOp; i++)
        if (lpri[i].ch==op)
            return lpri[i].pri;
}

int rightpri(char op)  //求右运算符op的优先级
{
    int i;
    for (i=0; i<MaxOp; i++)
        if (rpri[i].ch==op)
            return rpri[i].pri;
}

bool InOp(char ch)       //判断ch是否为运算符
{
    if (ch=='(' || ch==')' || ch=='+' || ch=='-'
            || ch=='*' || ch=='/')
        return true;
    else
        return false;
}

int Precede(char op1,char op2)  //op1和op2运算符优先级的比较结果
{
    if (leftpri(op1)==rightpri(op2))
        return 0;
    else if (leftpri(op1)<rightpri(op2))
        return -1;
    else
        return 1;
}
void trans(char *exp,char postexp[])
//将算术表达式exp转换成后缀表达式postexp
{
    SqStack *opstack;               //定义运算符栈
    int i=0;                //i作为postexp的下标
    ElemType ch;
    InitStack(opstack);   //用初始化栈运算为栈分配空间,务必要做
    Push(opstack, '=');
    while (*exp!='\0')      //exp表达式未扫描完时循环
    {
        if (!InOp(*exp))        //为数字字符的情况
        {
            while (*exp>='0' && *exp<='9') //判定为数字
            {
                postexp[i++]=*exp;
                exp++;
            }
            postexp[i++]='#';   //用#标识一个数值串结束
        }
        else    //为运算符的情况
        {
            GetTop(opstack, ch);   //取得栈顶的运算符
            switch(Precede(ch ,*exp))
            {
            case -1:           //栈顶运算符的优先级低:进栈
                Push(opstack, *exp);
                exp++;     //继续扫描其他字符
                break;
            case 0:        //只有括号满足这种情况
                Pop(opstack, ch);      //将(退栈
                exp++;     //继续扫描其他字符
                break;
            case 1:             //退栈并输出到postexp中
                postexp[i++]=ch;
                Pop(opstack, ch);
                break;
            }
        }

    } //while (*exp!='\0')
    Pop(opstack, ch);
    while (ch!='=')
        //此时exp扫描完毕,退栈到'='为止
    {
        postexp[i++]=ch;
        Pop(opstack, ch);
    }
    postexp[i]='\0';    //给postexp表达式添加结束标识
    DestroyStack(opstack);
}

int main()
{
    char exp[]="(56-20)/(4+2)"; //可将exp改为键盘输入
    char postexp[200];
    trans(exp,postexp);
    printf("中缀表达式:%s\n",exp);
    printf("后缀表达式:%s\n",postexp);
    return 0;
}


运行结果:

知识点总结:

中缀表达式一般遵循“先乘除,后加减,从左到右计算,先括号内,后括号外”的规则。

后缀表达式已考虑了运算符的优先级,没有括号,只有运算数和运算符。

学习心得:

注意中缀表达式和后缀表达式的运算规则,然后利用相关应用完成转换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值