第十二周上机实践—项目4—利用遍历思想求解图问题

本文介绍如何利用图的深度优先遍历和广度优先遍历来解决图论问题。包括判断简单路径存在性、输出简单路径、输出所有路径、输出特定长度的简单路径、寻找通过特定顶点的简单回路,以及在不带权连通图中找最短路径和最远顶点的方法。通过实际的运行结果展示算法的应用效果。
摘要由CSDN通过智能技术生成
</pre><pre class="cpp" name="code">/*
 *Copyright(c) 2015,烟台大学计算机学院
 *All rights reserved.
 *文件名称:test.cpp
 *作者:林莉
 *完成日期:2015年11月20日
 *版本:v1.0
 *
 *问题描述:假设图G采用邻接表存储,实现所要求的算法。
 *输入描述:无
 *程序输出:所得结果。
 */

1.头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明;

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

#endif // GRAPH_H_INCLUDED


 

2.源文件:graph.cpp,包含实现各种算法的函数的定义

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}

3.在同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作

[1*]应用图的深度优先遍历思路求解问题。

(1)是否有简单路径?
问题:假设图G采用邻接表存储,设计一个算法,判断顶点u到v是否有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
    int w;
    ArcNode *p;
    visited[u]=1;
    if(u==v)
    {
        has=true;
        return;
    }
    p=G->adjlist[u].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            ExistPath(G,w,v,has);
        p=p->nextarc;
    }
}

void HasPath(ALGraph *G,int u,int v)
{
    int i;
    bool flag = false;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    ExistPath(G,u,v,flag);
    printf(" 从 %d 到 %d ", u, v);
    if(flag)
        printf("有简单路径\n");
    else
        printf("无简单路径\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    HasPath(G, 1, 0);
    HasPath(G, 4, 1);
    return 0;
}1


运行结果:

(2)输出简单路径
问题:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
    //d表示path中的路径长度,初始为-1
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;  //路径长度d增1,顶点u加入到路径中
    if (u==v)   //找到一条路径后输出并返回
    {
        printf("一条简单路径为:");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
        return;         //找到一条路径后返回
    }
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
    while (p!=NULL)
    {
        w=p->adjvex;    //相邻点的编号为w
        if (visited[w]==0)
            FindAPath(G,w,v,path,d);
        p=p->nextarc;   //p指向顶点u的下一个相邻点
    }
}

void APath(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

int main()
{

    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    APath(G, 1, 0);
    APath(G, 4, 1);
    return 0;
}


运行结果:

(3)输出所有路径
问题:输出从顶点u到v的所有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d>1)            //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            FindPaths(G,w,v,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}


void DispPaths(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d的所有路径:\n",u,v);
    FindPaths(G,u,v,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispPaths(G, 1, 4);
    return 0;
}


运行结果:

(4)输出一些简单回路
问题:输出图G中从顶点u到v的长度为s的所有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void SomePaths(ALGraph *G,int u,int v,int s, int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d==s)           //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            SomePaths(G,w,v,s,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}

void DispSomePaths(ALGraph *G,int u,int v, int s)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d长为%d的路径:\n",u,v,s);
    SomePaths(G,u,v,s,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispSomePaths(G, 1, 4, 3);
    return 0;
}


运行结果:

(5)输出通过一个节点的所有简单回路
问题:求图中通过某顶点k的所有简单回路(若存在)

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
    while (p!=NULL)
    {
        w=p->adjvex;            //w为顶点u的相邻点
        if (w==v && d>0)        //找到一个回路,输出之
        {
            printf("  ");
            for (i=0; i<=d; i++)
                printf("%d ",path[i]);
            printf("%d \n",v);
        }
        if (visited[w]==0)          //w未访问,则递归访问之
            DFSPath(G,w,v,path,d);
        p=p->nextarc;       //找u的下一个邻接顶点
    }
    visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
    int path[MAXV],i;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("经过顶点%d的所有回路\n",k);
    DFSPath(G,k,k,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,1,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,1},
        {1,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    FindCyclePath(G, 0);
    return 0;
}


运行结果:

[2*]应用图的广度优先遍历思路求解问题。

(6)最短路径
问题:求不带权连通图G中从顶点u到顶点v的一条最短路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

typedef struct
{
    int data;                   //顶点编号
    int parent;                 //前一个顶点的位置
} QUERE;                        //非环形队列类型

void ShortPath(ALGraph *G,int u,int v)
{
    //输出从顶点u到顶点v的最短逆路径
    ArcNode *p;
    int w,i;
    QUERE qu[MAXV];             //非环形队列
    int front=-1,rear=-1;       //队列的头、尾指针
    int visited[MAXV];
    for (i=0; i<G->n; i++)      //访问标记置初值0
        visited[i]=0;
    rear++;                     //顶点u进队
    qu[rear].data=u;
    qu[rear].parent=-1;
    visited[u]=1;
    while (front!=rear)         //队不空循环
    {
        front++;                //出队顶点w
        w=qu[front].data;
        if (w==v)               //找到v时输出路径之逆并退出
        {
            i=front;            //通过队列输出逆路径
            while (qu[i].parent!=-1)
            {
                printf("%2d ",qu[i].data);
                i=qu[i].parent;
            }
            printf("%2d\n",qu[i].data);
            break;
        }
        p=G->adjlist[w].firstarc;   //找w的第一个邻接点
        while (p!=NULL)
        {
            if (visited[p->adjvex]==0)
            {
                visited[p->adjvex]=1;
                rear++;             //将w的未访问过的邻接点进队
                qu[rear].data=p->adjvex;
                qu[rear].parent=front;
            }
            p=p->nextarc;           //找w的下一个邻接点
        }
    }
}

int main()
{
    ALGraph *G;
    int A[9][9]=
    {
        {0,1,1,0,0,0,0,0,0},
        {0,0,0,1,1,0,0,0,0},
        {0,0,0,0,1,1,0,0,0},
        {0,0,0,0,0,0,1,0,0},
        {0,0,0,0,0,1,1,0,0},
        {0,0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0,1,1},
        {0,0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 9, G);
    ShortPath(G,0,7);
    return 0;
}


运行结果:

(7)最远顶点
问题:求不带权连通图G中,距离顶点v最远的顶点k

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

int Maxdist(ALGraph *G,int v)
{
    ArcNode *p;
    int i,j,k;
    int Qu[MAXV];               //环形队列
    int visited[MAXV];              //访问标记数组
    int front=0,rear=0;             //队列的头、尾指针
    for (i=0; i<G->n; i++)          //初始化访问标志数组
        visited[i]=0;
    rear++;
    Qu[rear]=v;                 //顶点v进队
    visited[v]=1;               //标记v已访问
    while (rear!=front)
    {
        front=(front+1)%MAXV;
        k=Qu[front];                //顶点k出队
        p=G->adjlist[k].firstarc;       //找第一个邻接点
        while (p!=NULL)             //所有未访问过的相邻点进队
        {
            j=p->adjvex;            //邻接点为顶点j
            if (visited[j]==0)          //若j未访问过
            {
                visited[j]=1;
                rear=(rear+1)%MAXV;
                Qu[rear]=j; //进队
            }
            p=p->nextarc;           //找下一个邻接点
        }
    }
    return k;
}

int main()
{
    ALGraph *G;
    int A[9][9]=
    {
        {0,1,1,0,0,0,0,0,0},
        {0,0,0,1,1,0,0,0,0},
        {0,0,0,0,1,1,0,0,0},
        {0,0,0,0,0,0,1,0,0},
        {0,0,0,0,0,1,1,0,0},
        {0,0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0,1,1},
        {0,0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 9, G);
    printf("离顶点0最远的顶点:%d",Maxdist(G,0));
    return 0;
}


运行结果:

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值