数论----概率,期望


近年的acm竞赛中,数学期望问题常有涉及,在以前也常让本人感到很头疼,近来突然开窍,掌握了基本的分析方法,希望对大家有帮助。写得浅薄,可能数学上不够严谨,只供理解。

            首先,来看下期望有啥基本的公式。

对离散型随机变量x,其概率为p,有

对随机变量AB, 

第二条式子是今天的主角,他表明了期望有线性的性质,简单理解就是期望之间可根据关系,简单运算(不严谨的理解)。 这就为我们解决一个期望问题,不断转化为解决另外的期望问题,最终转化到一个已知的期望上。

举一个求期望最简单的例子,见下图。

假设有个人在 1号节点处,每一分钟他会缘着边随机走到一个节点或者在原地停留,问他走到4号节点需要平均几分钟?


 

这是个简单的期望问题,我们用Ei(i=1,2,3,4) 表示从i号节点走到4号节点的数学期望值。根据题意对1号节点有

E1=1/3*E1+1/3*E2+1/3*E3+1 

表示 下一分钟可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一分钟,故要加上1.

同理我们对节点23同样可以列出

E2=(1/3)*E1+(1/3)*E2+(1/3)*E4+1 

E3=(1/3)*E1+(1/3)*E3+(1/3)*E4+1 

 

E4等于多少呢? 很明显E4=0 ④,因为他就是要到点4

 

这样上面1234式其实就是组成了一组方程组,解方程组就可得出E1!!,用高斯消元,复杂度是O(n^3)

 

从上述例子,我们可总结出如何解决期望类问题,根据题意,表示出各个状态的期望(上例的Ei1234,根据概率公式,列出期望之间的方程,解方程即可。

 

下面看用上述思路如何解决一道题(poj2096

原题见附件1

题意简述: 一个人受雇于某公司要找出某个软件的bugssubcomponents,这个软件一共有nbugsssubcomponents,每次他都能同时随机发现1bug1subcomponent,问他找到所有的bugssubcomponents的期望次数。

我们用E(i,j)表示他找到了ibugsjsubcomponents,离找到nbugsssubcomponents还需要的期望次数,这样要求的就是E(0,0),E(n,s)=0,对任意的E(i,j),1次查找4种情况,没发现任何新的bugssubcomponents,发现一个新的bug,发现一个新的subcomponent,同时发现一个新的bugsubcomponent,用概率公式可得:

E(i,j)=1+(i*j/n/s)*E(i,j)+(i*(s-j)/n/s)E(i,j+1)+

((n-i)*j/n/s)*E(i+1,j)+(n-i)*(s-j)/n/s*E(i+1,j+1);

这样根据边界就可解出所有的E(i,j),注意因为当我们找到nbugsssubcomponents就结束,对i>n||j>s均无解的情况,并非期望是0.(数学上常见问题,0和不存在的区别)

那这题是否也是要用高斯消元呢? 用高斯消元得话复杂度是O(n^3),达到10^18 根本是不可解的!!

但其实,注意观察方程,当我们要解E(i,j)的话就需要E(i+1,j),E(I,j+1),E(i+1,j+1), 一开始已知E(n,s),那其实只要我们从高往低一个个解出I,j就可以了! 即可根据递推式解出所有的E(I,j) 复杂度是O(n),10^6 ,完美解决。程序见附件2

 

从上面这道题,我们再次看到了解决期望问题的思路,而且是用到了递推解决问题,其实可递推的原因,当我们把各个状态当成是一个个节点时,概率关系为有向边,我们可看到,可递推的问题其实就是这个关系图是无环的!!那必须要用方程组解决的问题其实就是存在环!!!! 而且我还要指出的是用高斯消元的时候,要注意误差的问题,最好把式子适当的增大,避免解小数,否则误差太大,估计也会卡题。

-----------------------------------------------------------------

简易的入门:点击打开链接    点击打开链接

大神的总结:点击打开链接     zerolock

我搞的题目:点击打开链接

//2015.5.11更新

当求出转移方程的时候,如何破环是关键.

当每个方程之和一个未知数关联时,迭代两次即可eg:hdu 4089

当有一个是多个时,就必须用高斯消元

===================================================

前段时间一直在做概率的题目。

1、A=a+b+c  abc是三种情况,那么P(A)=a*P(a->事件)+b*P(b->事件)+c*P(c->事件);
a->事件意思是 在a情况下的事件,就是全概率公式的思想吧
2、一定注意每一步会不会出现分母为0 的情况,以及预处理的时候对于一些特殊情况导致自己的式子会出现分母为0的排除掉


一、期望

其中求解期望问题刚开始一直不理解。后来做得多了有感觉。

例:(有放回)

在5件产品有4件正品,1件次品,从中任取2件,记其中含正品的个数个数为随机变量ξ,则ξ的数学期望Eξ是 1.6

在5件产品有4件正品,1件次品,从中任取2件,记其中含正品的个数个数为随机变量ξ,则ξ=2时所取次数的数学期望是1.16

第一个例子是平常学的期望,做一件事情各个结果的可能情况期望。第二个例子是题目出的,做一件事情需要次数的期望。

解决这类问题,对随机变量A、B,有 数学期望E(aA+bB)=aE(A)+bE(b);
有了这个公式你就可以进行将连续的期望问题,转化为独立的状态了,概率就相当于a,b;A,B为变量。变为线性问题。

E1=(1/3)*E1+(1/3)*E2+(1/3)*E3+1 ①
表示 下一次可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一次,故要加上1.

对于这类问题有三种,

1 无环直接递推解决,概率DP求期望入门,HDU 4405,POj 2096,HDU 3853

zoj 3640 当终结点不容易确定的时候用记忆化搜索。

2 只是个别点会构成回路 hdu4035  zoj3329

既DP[i]可能由DP[i+k]和DP[i+j]需要求的比如DP[0]决定
相当于概率一直递推下去会回到原点 
比如
(1):DP[i]=a*DP[i+k]+b*DP[0]+d*DP[i+j]+c; 
但是DP[i+k]和DP[0]都是未知
这时候根据DP[i]的方程式假设一个方程式:
比如:
(2):DP[i]=A[i]*DP[i+k]+B[i]*DP[0]+C[i];
因为要求DP[0],所以当i=0的时候但是A[0],B[0],C[0]未知
对比(1)和(2)的差别 
这时候对比(1)和(2)发现两者之间的差别在于DP[i+j]
所以根据(2)求DP[i+j]然后代入(1)消除然后对比(2)就可以得到A[i],B[i],C[i]
然后视具体情况根据A[i],B[i],C[i]求得A[0],B[0],C[0]继而求DP[0] 

3 (用来破环)高斯消元解决,迷宫概率.......HDU2262

对于来回对称方向的处理类似环形dp处理,可以对称加过去 eg: 6   可以表示成 1 2 3 4 5 6 5 4 3 2 然后取模返回去。

 HDU4418

//E[x] = sum ((E[x+i]+i) * p[i])  
// ----> E[x] - sum(p[i]*E[x+i]) = sum(i*p[i])  

这个没什么说的

4 状态压缩 HDU4336 这个和无环递推一样,不过也可以用容斥的方法。

首先容斥定理相当于是求多个集合的并集,但是因为两两之间有交集所以需要剪掉重复剪掉的部分。当集合个数多于三个的时候又会出现三个集合之间的交集被误剪掉了,或者四个之间的交集部分又重复计算了等等。于是容斥定理就有用了,当集合个数为n时,我们要算总并集,我们就要算所有的一个集合的大小,所有的两个集合的交集的大小,所有的三个的集合交集的大小,直到n个集合的交集的大小,中间偶数个减掉,奇数个加起来就可以了。楼主容斥定理的那个程序用i的二进制表示一个大集合,i中的每个1表示一个小集合。当i++从0到(1<<n-1)就是00...000到11...111变化的过程可以穷举所有的可能交集情况,然后算出它的大小。“cnt&1”就是在判断奇偶,通过加或者减算出并集。
“1.0/sum”是在算包数,就是期望=np,所以n=期望除以概率,这里期望只要是1就可以了。然后就是每种情况求概率的问题了,比如说某种情况是1101,那么就是算1000,0100,0001三种事件同时发生的概率,因为各个事件是独立的,所以直接可以把概率相加得到总的概率。

独立事件概率相加理解:一次取到这几个东西都行的概率。而之前单个概率值是取单个的概率

其中 f[i]+=in[j]*f[i|(1<<j)];可以保证无后向性。


二、概率

验前概率就是通常说的概率,验后概率是一种条件概率,但条件概率不一定是验后概率。贝叶斯公式是由验前概率求验后概率的公式。
举一个简单的例子:一口袋里有3只红球、2只白球,采用不放回方式摸取,求:
⑴ 第一次摸到红球(记作A)的概率;
⑵ 第二次摸到红球(记作B)的概率;
⑶ 已知第二次摸到了红球,求第一次摸到的是红球的概率。
解:⑴ P(A)=3/5,这就是验前概率;
⑵ P(B)=P(A)P(B|A)+P(A逆)P(B|A逆)=3/5
⑶ P(A|B)=P(A)P(B|A)/P(B)=1/2,这就是验后概率。


poj3744  一条路上有地雷,一个人要通过那必然是都得通过(没有踩到),递推就能解决。使用要矩阵快速幂。注意移位使用本来的数字否则会溢出。

poj3071 足球概率模拟题,注意二进制倍增的过程中三层循环。

CodeForces 148D   dp意思是龙在X X情况下胜利的概率,依据题意可以很容易写出。

poj2151     每队均至少做一题的概率P1 减去 每队做题数均在1到N-1之间的概率P2

SGU 495
题意:n个盒子里装有礼物,m个人随机选择礼物,选完之后空盒子放回
问选中的礼物数的期望。

m个人是独立的。
对于每个礼物不被人选中的概率为((n-1)/n)^m
那么不被选中的礼物数的期望就是 n*((n-1)/n)^m
所以答案就是  n-n*((n-1)/n)^m;
或者
//第i个人得到礼物的概率:假如第i-1个人没有得到礼物,那么i得到礼物的概率和i-1一样。
//假如第i-1个人得到了礼物,那么i得到礼物的概率是i-1得到礼物概率减去1/n
            dp[i]=(1-dp[i-1])*dp[i-1]+dp[i-1]*(dp[i-1]-1.0/n);

HDU 4089 dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。

转移的时候,考虑的是队头的那个人而不是当前在J这个位置。

j == 1 :     dp[i][1] = p1*dp[i][1] + p2*dp[i][i]   + p4;
2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
j > k  :      dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];

ZOJ 3380

可以dp处理有没有i个位置的数字一样的概率dp[i][j]表示当前已经放了j个位置,用到了第i种颜色
即dp[i][j]=dp[i-1][j-k]*C(m-(j-k),k)    (k<=j&&k<l) 表示我们找出k个位置填入数字i
因为如果l>m则必然是无解的,l>m/2可以直接用组合计数算出,时间减少一半数字很大,也没有取模,需要大数处理


推荐几篇参考的论文:

《信息学竞赛中概率问题求解初探》

《浅析竞赛中一类数学期望问题的解决方法》

《有关概率和期望问题的研究


  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值