题意:给你一串字符,通过添加删除其中的一部分,使其变成一个回文串,并且花费最小(添加删除都有权值)
分析:删除一个字符和添加一个字符是等价的,考虑最小即可,设dp[i][j]表示在区间i j范围内构成回文的最小花费,if 当前匹配的两个字符相等,str[i] == str[j] 那么dp[i][j] = dp[i+1][j-1];else则把左边添加删除一个右边的值 或者在右边添加删除一个左边的值 ,取一个最小,dp[i][j]=min(dp[i+1][j]+cost[str[i]-'a'],dp[i][j-1]+cost[str[j]-'a']);
代码如下
#include<stdio.h>
#include<string.h>
#define maxnum 2005
char str[maxnum];
int cost[27];
int dp[maxnum][maxnum];
int min(int x,int y)
{
return x<y?x:y;
}
void main()
{
int n,m,i,j;
int a,b;
char ch;
scanf("%d%d",&n,&m);
scanf("%s",str);
for(i=0;i<n;i++)
{
getchar();
scanf("%c%d%d",&ch,&a,&b);
cost[ch-'a']=min(a,b);
}
memset(dp,0,sizeof(dp));
for(j=1;j<m;j++)
{
for(i=j-1;i>=0;i--)
{
if(str[i]==str[j])
dp[i][j]=dp[i+1][j-1];
else
dp[i][j]=min(dp[i+1][j]+cost[str[i]-'a'],dp[i][j-1]+cost[str[j]-'a']);
}
}
printf("%d\n",dp[0][m-1]);
}