题目描述:
给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],
其中B中的元素B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1]。不能使用除法。
(注意:规定B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2];)
对于A长度为1的情况,B无意义,故而无法构建,因此该情况不会存在。
分析:
特殊情况:
B[0] = A[1] * A[2] * ... * A[n-1]
正常情况:
B[i] = A[0] * A[1] *...* A[i-1] * A[i+1] * ... * A[n-1]
注意中间的A[i]
是没有的,如果不仔细读题,很难看出来。
举例:
A = {1,2,3,4,5},图解:
B[0] = A[1] * A[2] * A[3] * A[4]
B[1] = A[0] * A[2] * A[3] * A[4]
B[2] = A[0] * A[1] * A[3] * A[4]
B[3] = A[0] * A[1] * A[2] * A[4]
B[4] = A[0] * A[1] * A[2] * A[3]
我们将A[i]设置为1,这样就直接将每一行都乘起来就可以了,即:
B[i] = A[0] * A[1] * A[2] * A[3] * A[4] (0<=i<5)
由于重新构建需要扫描二维数组一遍,所以时间复杂度为:O(n^2),但是我们可以先计算上半三角区域和下半三角区域,来将复杂度降低为:O(n),n为A数组的长度。
计算下半三角,可以发现规律:B[i] = B[i-1] * A[i-1]
计算上半三角,需要用一个变量来保存从后往前的值,1 * 5 * 4 * 3....
上代码:
import java.util.*;
public class Solution {
public int[] multiply(int[] A) {
if(A == null || A.length <= 1){
return new int[0];
}
//计算上三角
int[] B = new int[A.length];
B[0] = 1;
//B[i] = B[i-1] * A[i-1]
for(int i = 1; i < B.length; i++){
B[i] = B[i-1] * A[i-1];
}
//计算下三角
int tmp = 1; //用一个变量保存
for(int i = B.length-1; i >= 0; i--){
B[i] = B[i] * tmp;
tmp = tmp * A[i]; //1->1*5->1*5*4->1*5*4*3->1*5*4*3*2->1*5*4*3*2*1
}
return B;
}
}