描述
给定一个数字列表,返回其所有可能的排列。
在线测评地址
样例 1:
输入:
列表 = [1]
输出:
[
[1]
]
样例 2:
输入:
列表 = [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
挑战
使用递归和非递归分别解决。
算法步骤
1、根据题目要求,首先需要定义并初始化一个布尔类型used数组记录每个数字是否已被使用,一个数组current记录当前遍历的排列,一个二维数组results记录所有结果;
2、对输入的数字列表nums进行深度优先搜索,传入的参数包括:数字列表nums、used、current、results;
*边界条件:当current中的元素个数和nums的相同,代表一次遍历完毕,将当前的current加入results并return;
*遍历nums,如果nums中当前这个元素未被使用,则在used中标记其已使用,将其加入current,并递归调用dfs;
*调用完毕后需要回退,即在used中标记其未使用;
源代码:
使用深度优先搜索算法。 使用 visited 数组记录某个数是否被放到 permutation 里了。
public class Solution {
/*
* @param nums: A list of integers.
* @return: A list of permutations.
*/
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> results = new ArrayList<>();
if (nums == null) {
return results;
}
dfs(nums, new boolean[nums.length], new ArrayList<Integer>(), results);
return results;
}
private void dfs(int[] nums,
boolean[] visited,
List<Integer> permutation,
List<List<Integer>> results) {
if (nums.length == permutation.size()) {
results.add(new ArrayList<Integer>(permutation));
return;
}
for (int i = 0; i < nums.length; i++) {
if (visited[i]) {
continue;
}
permutation.add(nums[i]);
visited[i] = true;
dfs(nums, visited, permutation, results);
visited[i] = false;
permutation.remove(permutation.size() - 1);
}
}
}