题目:1*2*3*……*100 求结果末尾有多少个零

分析:

一般类似的题目都会蕴含某种规律或简便方法的

阶乘末尾一个零表示一个进位,则相当于乘以10

而10 是由2*5所得,在1~100当中,可以产生10的有:0 2 4 5 6 8 结尾的数字,

显然2是足够的,因为4、6、8当中都含有因子2,所以都可看当是2,那么关键在于5的数量了

那么该问题的实质是要求出1~100含有多少个5

由特殊推广到一般的论证过程可得:

1、 每隔5个,会产生一个0,比如 5, 10 ,15,20.。。


2 、每隔 5×5 个会多产生出一个0,比如 25,50,75,100

3 、每隔 5×5×5 会多出一个0,比如125.

 

所以100!末尾有多少个零为:

100/5+100/25=20+4=24

那么1000!末尾有多少个零呢?同理得:

1000/5+1000/25+1000/125=200+40+8=248

 

到此,问题解决了,但我们在学习过程中应当学会发散思维、举一反三

 

接着,请问N!的末尾有多少个零呢??

 

其实 也是同理的

 

N/5+N/25+……

 

如计算 2009! 的末尾有多少个0:

2009/5 = 401 1~2009之间有 401 个数是 5 的倍数(余数省略).

401/5 = 80 1~2009 之间有 80 个数是 25 的倍数.

80/5 = 16 1~2009 之间有 16 个数是 125 的倍数.

16/5 = 3 1~2009 之间有 3个数是 625 的倍数.

3/5 = 0 1~2009 之间有 0 个数是 3125 的倍数.

所以, 2009! 的末尾有 401 + 80 + 16 +3 = 500 个0.


  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目中的$b_n$的定义是$n$的阶乘,即$b_n=1*2*3*\cdots*n$。已知$b_3!=6$,$b_5!=120$,而$n!$的末尾会有很多个0,现在我们统计$n!$去除末尾的0之后最后有多少个0。注意到10是由$2*5$得到的,因此我们只需要统计$n!$中2和5的个数,然后取两者的最小值,即为$n!$末尾0的个数。显然2的个数远大于5的个数,因此我们只需要计算$n!$中5的因子个数。依次分别除以5,25,125……,并对每次得到的商进行累加即可。具体来讲,设$f(n)$表示$n!$中5的因子数,则有: $$f(n)=\left\lfloor \frac{n}{5}\right\rfloor +\left\lfloor\frac{n}{25}\right\rfloor+\left\lfloor\frac{n}{125}\right\rfloor+\cdots$$ 现在我们来看一下最后一个问题,即$n!$除以末尾的0之后最后有多少个非0数字。很明显,这就是要$n!$除以10之后最后一位非0数的个数,而这个数可以看成是$n!$中质因数2和5的个数之间的最小值。根据之前的计算,$n!$中5的因子数即为$n!$末尾0的个数,那么质因数2的个数又可以通过类似的方法来计算,即 $$g(n)=\left\lfloor \frac{n}{2}\right\rfloor +\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n}{8}\right\rfloor+\cdots$$ 综上所述,我们只需要出$f(n)$和$g(n)$,然后取两者的最小值即可。同时,注意到$f(n)$和$g(n)$都可以用对数的形式表示,具体来讲,有: $$f(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{5^i}\right\rfloor,\quad g(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{2^i}\right\rfloor$$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值