ST 表 RMQ算法

2 篇文章 0 订阅

RMQ算法求解的是区间最值问题,比如求区间最大值

例如一个数列 9 5 3 4 1 8 7 2 9 5 ,多次询问,每次询问任意一个区间的最大值

ST表: 一个通过动态规划预处理生成的表,时间复杂度为 O(nlogn),但是查询时间为 O(1)

首先 st[ i ][ j ] 表示 从下标 i 开始,长度为 2^j 的区间里的最大值

那么对于一个区间  [a,b] ,它的最大值 = max( [ a, (a + b) / 2 ] ,[ (a + b) / 2 + 1,b ] ) ,也就是从区间中间分开两个小区间

其实也有点类似于线段树的思想,一直分下去就会分到长度为1的区间,而长度为1的区间的最值是可以直接确定的

所以 st[i] [0] = num[ i ]

所以这个动态规划的状态就是从某个区间的两个子区间得来的

现在 st[ i ][ j ] 表示的是 区间左端点为 i ,长度为 2^j ,所以表示的区间 =  [ i , i + 2 ^ j - 1 ]

那么从中间分开的话,它的两个子区间分别是  [ i , i + 2 ^ (j - 1) - 1]  和 [ i + 2 ^ (j - 1) , i + 2 ^ j - 1 ]

用 st 表来表示这两个子区间的话就是  st[ i ][ j - 1 ]  和 st [ i + 2^(j - 1) ][ j - 1 ];

所以状态转移方程 :  st[ i ][ j ] = max( st[ i ][ j - 1 ] , st[ i + 2^(j - 1)][ j - 1 ] )

void ST(int n) {
    for (int i = 1; i <= n; i++)
        st[i][0] = num[i];
    for (int j = 1; (1 << j) <= n; j++) {
        for (int i = 1; i + (1 << j) - 1 <= n; i++) {
            st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
        }
    }
}

那么做完了预处理,得到了ST表之后,如何进行查询呢?

例如 现在要查询 [ a , b ] 这个区间的最大值

我们可以确定起点一定是  a ,所以就是要找到   st [ a ] [ ? ]  ,但是这里有一个问题,我们查询的长度不一定是 2 的次方数

没有关系,我们只需要找到两个区间 x 和 y,并且满足 x区间的起点 = a 且终点 <= b,y区间的终点 = b 且起点 >= a 

那么 区间 [ a , b ] 的最大值 = max( x , y )

所以我们要找到一个 k 使得  (1 << k)  <= (b - a + 1)

那么我们要找的两个区间就是  st [ a ][ k ] 和 st [ b - (1 << k) + 1 ][ k ]

int RMQ(int l, int r) {
    int k = 0;
    while ((1 << (k + 1)) <= r - l + 1) 
        k++;
    return max(st[l][k], st[r - (1 << k) + 1][k]);
}

但是这样每次查询的时候都要去找到最接近且小于等于 r - l + 1 的2的次方数

所以我们可以先打个 log 表

void init(){
	log[0] = -1;
	for(int i = 1;i < maxn;i++){
		log[i] = log[i >> 1] + 1;
	}	
}

查询的时候:


int RMQ(int l, int r) {
    int k = log[r - l + 1];
    return max(st[l][k], st[r - (1 << k) + 1][k]);
}

RMQ 算法就是这样啦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值