RMQ算法求解的是区间最值问题,比如求区间最大值
例如一个数列 9 5 3 4 1 8 7 2 9 5 ,多次询问,每次询问任意一个区间的最大值
ST表: 一个通过动态规划预处理生成的表,时间复杂度为 O(nlogn),但是查询时间为 O(1)
首先 st[ i ][ j ] 表示 从下标 i 开始,长度为 2^j 的区间里的最大值
那么对于一个区间 [a,b] ,它的最大值 = max( [ a, (a + b) / 2 ] ,[ (a + b) / 2 + 1,b ] ) ,也就是从区间中间分开两个小区间
其实也有点类似于线段树的思想,一直分下去就会分到长度为1的区间,而长度为1的区间的最值是可以直接确定的
所以 st[i] [0] = num[ i ]
所以这个动态规划的状态就是从某个区间的两个子区间得来的
现在 st[ i ][ j ] 表示的是 区间左端点为 i ,长度为 2^j ,所以表示的区间 = [ i , i + 2 ^ j - 1 ]
那么从中间分开的话,它的两个子区间分别是 [ i , i + 2 ^ (j - 1) - 1] 和 [ i + 2 ^ (j - 1) , i + 2 ^ j - 1 ]
用 st 表来表示这两个子区间的话就是 st[ i ][ j - 1 ] 和 st [ i + 2^(j - 1) ][ j - 1 ];
所以状态转移方程 : st[ i ][ j ] = max( st[ i ][ j - 1 ] , st[ i + 2^(j - 1)][ j - 1 ] )
void ST(int n) {
for (int i = 1; i <= n; i++)
st[i][0] = num[i];
for (int j = 1; (1 << j) <= n; j++) {
for (int i = 1; i + (1 << j) - 1 <= n; i++) {
st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}
}
}
那么做完了预处理,得到了ST表之后,如何进行查询呢?
例如 现在要查询 [ a , b ] 这个区间的最大值
我们可以确定起点一定是 a ,所以就是要找到 st [ a ] [ ? ] ,但是这里有一个问题,我们查询的长度不一定是 2 的次方数
没有关系,我们只需要找到两个区间 x 和 y,并且满足 x区间的起点 = a 且终点 <= b,y区间的终点 = b 且起点 >= a
那么 区间 [ a , b ] 的最大值 = max( x , y )
所以我们要找到一个 k 使得 (1 << k) <= (b - a + 1)
那么我们要找的两个区间就是 st [ a ][ k ] 和 st [ b - (1 << k) + 1 ][ k ]
int RMQ(int l, int r) {
int k = 0;
while ((1 << (k + 1)) <= r - l + 1)
k++;
return max(st[l][k], st[r - (1 << k) + 1][k]);
}
但是这样每次查询的时候都要去找到最接近且小于等于 r - l + 1 的2的次方数
所以我们可以先打个 log 表
void init(){
log[0] = -1;
for(int i = 1;i < maxn;i++){
log[i] = log[i >> 1] + 1;
}
}
查询的时候:
int RMQ(int l, int r) {
int k = log[r - l + 1];
return max(st[l][k], st[r - (1 << k) + 1][k]);
}
RMQ 算法就是这样啦