1、数据结构与算法基本概念

本文深入探讨了数据结构的概念,包括逻辑结构与物理结构的区别,详细讲解了集合、线性、树形和图形结构的特点。同时,文章还阐述了算法的基本特性,如输入输出性、有穷性、确定性和可行性,以及算法的时间复杂度分析。
摘要由CSDN通过智能技术生成

数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。

1、逻辑结构与物理结构

逻辑结构:是指数据对象中数据元素之间的相互关系。

  • 集合结构:集合结构中的数据元素除了同属于一个结合外,他们之间没有其他关系。
  • 线性结构:线性结构中的数据元素之间是一对一的关系。
  • 树形结构:数据元素之间存在一种一对多的层次关系。
  • 图形结构:图形结构的数据元素是多对多的关系。

物理结构:是指数据的逻辑结构在计算机中的存储形式。

  • 顺序存储结构:是把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的。
  • 链式存储结构:是把数据元素存放在任意的存储单元里,这组存储单元可以是连续的,也可以不连续的。数据元素的存储关系并不能反映其逻辑关系,因此需要用一个指针存放数据元素的地址,这样通过地址就可以找到相关联数据元素的位置。

2、算法

算法:算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性
  • 输入输出性:算法具有零个或多个输入。至少有一个或多个输出。
  • 有穷性:指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成。
  • 确定性:算法的每一步骤都具有确定的含义,不会出现二义性。
  • 可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成。
算法时间复杂度

定义:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
常见的时间复杂度:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值