OJ_最大序列和

题干

在这里插入图片描述

C++实现

#include <stdio.h>
#include <algorithm>
using namespace std;

long long s[1000001];
long long dp[1000002];//dp[i]是前i个元素中必须包含右边缘的最大子序和

int main() {
    int n;
    scanf("%d",&n);
    for(int i = 0; i< n;i++){
        scanf("%lld",&s[i]);
    }

    dp[1] = s[0];
    long long curmax = dp[1];
    for(int i = 2;i<=n;i++){
        if(dp[i-1] <= 0){
            dp[i] = s[i-1];//序号是从0开始的,dp[i]的前i个元素是s[0]-s[i-1]
        }else{
            dp[i] = s[i-1]+dp[i-1];
        }
        curmax = max(dp[i],curmax);
    }
    printf("%lld",curmax);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值