问题一: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:
1)一级台阶的时候有一种跳法,两级台阶的时候则有两种跳法,
2) n级台阶的时候,则有两种可能,一种是跳一级,然后剩下的有f(n-1)种跳法,或者跳两级,剩下的有f(n-2)种跳法
3)由以上思路我们很快就能够联想到递归,但是这道题用递归的话,空间复杂度太高。事实上这是一道斐波那契数列类似的题
(ps.提醒自己用的:猪脑袋,记住了,斐波那契数列输出最后一个结果的话,用三个变量就行了,别再用递归了)
public class Solution {
//斐波那契数列数列问题
/*
public int JumpFloor(int target) {
if(target<1)
return 0;
else if(target==1)
return 1;
else if(target==2)
return 2;
else
return JumpFloor(target-1)+JumpFloor(target-2);
}
*/
public int JumpFloor(int target) {
if(target<3)
return target;
int s=0;
int f1=1,f2=2;
for(int i=2;i<target;i++){
s=f1+f2;
f1=f2;
f2=s;
}
return s;
}
}
问题二:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
链接:https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387
来源:牛客网
关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
…
f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)
说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
| 2*f(n-1) ,(n>=2)
public class Solution {
public int JumpFloorII(int target) {
if(target<1)
return 0;
else if(target==1)
return 1;
else{
return 2*JumpFloorII(target-1);
}
}
}
类似问题:我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
链接:https://blog.csdn.net/ListentTome/article/details/79846202