题目大意:T个点的无向图,给定S和E,求从S到E经过恰好N条边的最短路。
数据范围:T<=100,N<=1000000。
思路:先说一下floyd的原理,每进行一次floyd,就相当于在两个点中又新插入了一个点,所以进行n次就能解决问题。题目中给的点不是连续的,因此需要先将它们编号1至num。最后利用快速幂的思想进行n次floyd。
在程序中:maptype为图类型,采用邻接矩阵存储,并进行初始化,且pre为最初的图。num记录出现的点的数目。used[ ]记录某一点是否已被编号过。hash[ ]用以记录各个点对应的编号。mul( )为floyd算法的使用。power即快速幂。
程序如下:
#include<iostream>
#include<cstring>
struct maptype
{
int mp[200][200];
maptype()
{
memset(mp,-1,sizeof(mp));
}
};
using namespace std;
int n,t,s,e,num=0;
int used[2000],hash[2000];
maptype pre;
maptype mul(maptype a,maptype b)
{
maptype now;
for (int k=1;k<=num;++k)
for (int i=1;i<=num;++i)
for (int j=1;j<=num;++j)
{
if ( (a.mp[i][k]<0) || (b.mp[k][j]<0) )
continue;
if ( (now.mp[i][j]==-1) || (now.mp[i][j]>a.mp[i][k]+b.mp[k][j]) )
now.mp[i][j]=a.mp[i][k]+b.mp[k][j];
}
return now;
}
maptype power(maptype nowmap,int k)
{
if (k==1)
return nowmap;
maptype tmp=power(nowmap,k/2);
if (k%2==0)
{
return mul(tmp,tmp);
}
else
{
maptype temp=mul(tmp,tmp);
return mul(temp,nowmap);
}
}
void init()
{
cin>>n>>t>>s>>e;
int len,u,v;
memset(used,0,sizeof(used));
for (int i=1;i<=t;++i)
{
cin>>len>>u>>v;
if (used[u]==0)
{
++num;
hash[u]=num;
used[u]=1;
}
if (used[v]==0)
{
++num;
hash[v]=num;
used[v]=1;
}
if (pre.mp[hash[u]][hash[v]]==-1)
pre.mp[hash[u]][hash[v]]=pre.mp[hash[v]][hash[u]]=len;
else
{
if (pre.mp[hash[u]][hash[v]]>len)
pre.mp[hash[u]][hash[v]]=pre.mp[hash[v]][hash[u]]=len;
}
}
}
int main()
{
init();
pre=power(pre,n);
cout<<pre.mp[hash[s]][hash[e]];
return 0;