POJ3613 Cow Relays

题目大意:T个点的无向图,给定S和E,求从S到E经过恰好N条边的最短路。

数据范围:T<=100,N<=1000000。

思路:先说一下floyd的原理,每进行一次floyd,就相当于在两个点中又新插入了一个点,所以进行n次就能解决问题。题目中给的点不是连续的,因此需要先将它们编号1至num。最后利用快速幂的思想进行n次floyd。

在程序中:maptype为图类型,采用邻接矩阵存储,并进行初始化,且pre为最初的图。num记录出现的点的数目。used[ ]记录某一点是否已被编号过。hash[ ]用以记录各个点对应的编号。mul( )为floyd算法的使用。power即快速幂。

程序如下:

#include<iostream>
#include<cstring>
struct maptype
{
    int mp[200][200];
    maptype()
    {
        memset(mp,-1,sizeof(mp));
    }
};
using namespace std;
int n,t,s,e,num=0;
int used[2000],hash[2000];
maptype pre; 

maptype mul(maptype a,maptype b)
{
    maptype now;
    for (int k=1;k<=num;++k)
      for (int i=1;i<=num;++i)
        for (int j=1;j<=num;++j)
        {
           if ( (a.mp[i][k]<0) || (b.mp[k][j]<0) )
             continue;
           if ( (now.mp[i][j]==-1) || (now.mp[i][j]>a.mp[i][k]+b.mp[k][j]) )
             now.mp[i][j]=a.mp[i][k]+b.mp[k][j];
        }
    return now;
}

maptype power(maptype nowmap,int k)
{
    if (k==1)
      return nowmap;
    maptype tmp=power(nowmap,k/2);
    if (k%2==0)
    {
        return mul(tmp,tmp);
    }
    else
    {
        maptype temp=mul(tmp,tmp);
        return mul(temp,nowmap);
    }   
}

void init()
{
    cin>>n>>t>>s>>e;
    int len,u,v;
    memset(used,0,sizeof(used));
    for (int i=1;i<=t;++i)
    {
        cin>>len>>u>>v;
        if (used[u]==0)
        {
            ++num;
            hash[u]=num;
            used[u]=1;
        }
        if (used[v]==0)
        {
            ++num;
            hash[v]=num;
            used[v]=1;
        }
        if (pre.mp[hash[u]][hash[v]]==-1)
          pre.mp[hash[u]][hash[v]]=pre.mp[hash[v]][hash[u]]=len;
        else
        {
            if (pre.mp[hash[u]][hash[v]]>len)
              pre.mp[hash[u]][hash[v]]=pre.mp[hash[v]][hash[u]]=len;
        }       
    }   
}

int main()
{
    init();
    pre=power(pre,n);
    cout<<pre.mp[hash[s]][hash[e]];
    return 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值