【考研数学高数部分】泰勒展开式

本文深入探讨了泰勒展开式在考研数学中的应用,详细解析了泰勒公式及其等价无穷小的概念。通过举例展示了常用函数如sinx、cosx、arcsin、arctan等的泰勒展开,并解释了泰勒级数的误差性质。同时,提到了高等数学中关于无穷小的等价关系,如lnx在x趋近于1时与x-1的等价无穷小关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泰勒展开式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( x 0 + θ ( x − x 0 ) ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( 0 < θ < 1 ) 意义:可用n次多项式来近似表达函数f(x), 且误差是当 x → x 0  时比 ( x − x 0 ) n 高阶无穷小 \begin{array}{l} \\ f(x) = f(x_0)+f'(x_0)(x-x_0)\\ \\ +{\frac{f''(x_0)}{2!}}{(x-x_0)^2}+...\\ \\ +{\frac{f^{(n)}(x_0)}{n!}}{(x-x_0)^n}\\ \\ +{\frac{f^{(n+1)}(x_0+\theta(x-x_0))}{(n+1)!}}{(x-x_0)^{n+1}} (0<\theta<1)\\ \end{array}\\ {\text{意义:可用n次多项式来近似表达函数f(x), 且误差是当}}x\rightarrow x_0 {\text{ 时比}}(x-x_0)^n{\text{高阶无穷小}} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(x0+θ(xx0))(xx0)n+1(0<θ<1)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值