泰勒展开式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( x 0 + θ ( x − x 0 ) ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( 0 < θ < 1 ) 意义:可用n次多项式来近似表达函数f(x), 且误差是当 x → x 0 时比 ( x − x 0 ) n 高阶无穷小 \begin{array}{l} \\ f(x) = f(x_0)+f'(x_0)(x-x_0)\\ \\ +{\frac{f''(x_0)}{2!}}{(x-x_0)^2}+...\\ \\ +{\frac{f^{(n)}(x_0)}{n!}}{(x-x_0)^n}\\ \\ +{\frac{f^{(n+1)}(x_0+\theta(x-x_0))}{(n+1)!}}{(x-x_0)^{n+1}} (0<\theta<1)\\ \end{array}\\ {\text{意义:可用n次多项式来近似表达函数f(x), 且误差是当}}x\rightarrow x_0 {\text{ 时比}}(x-x_0)^n{\text{高阶无穷小}} f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+...+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(x0+θ(x−x0))(x−x0)n+1(0<θ<1)