多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5 每组测试数据有相同的结构构成。 每组数据的第一行两个整数N,d,表示人数与朋友间存款差的最大值,其中2<=N<=50,0<=d<=1000. 接下来有一个N*N的数组A,若A[i][j]='Y'表示i与j两个人是朋友,否则A[i][j]='N'表示不是朋友。其中A[i][i]='N',且保证 A[i][j]=A[j][i].
每组数据一行输出,即这个国家的贫富差距最大值的下界,如果这个值为无穷大输出-1.
3 3 10 NYN YNY NYN 2 1 NN NN 6 1000 NNYNNN NNYNNN YYNYNN NNYNYY NNNYNN NNNYNN
20 -13000
按照题意,我们下意识想的就是找i到j的最短路的最长的一条,并且不构成环。
所以直接floyd求任意两点的最短路。
再找最大值即可。
如果最大值大于某个界限了,也就是又环了,则输出-1
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; char str[55][55]; int road[55][55], ans; int main(void) { int T, n, m, i, j, k; scanf("%d", &T); while(T--) { scanf("%d%d", &n, &m); memset(road, 1, sizeof(road)); for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { scanf(" %c", &str[i][j]); if(str[i][j]=='Y') road[i][j] = 1; } } for(k=1;k<=n;k++) { for(i=1;i<=n;i++) { for(j=1;j<=n;j++) road[i][j] = min(road[i][j], road[i][k]+road[k][j]); } } ans = 1; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { if(i!=j) ans = max(ans, road[i][j]); } } if(ans<=10000) printf("%d\n", ans*m); else printf("-1\n"); } return 0; }