RAG是什么?

RAG(Retrieval-Augmented Generation)检索增强生成

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索(IR)大语言模型(LLM)的技术,用于提升生成式 AI 的准确性和可靠性。它广泛应用于问答系统、知识增强对话和事实性内容生成等场景。


RAG 的核心思想

  1. 检索(Retrieval)

    • 从外部知识库(如数据库、文档、网页)检索与用户查询相关的信息。

    • 例如:用户问“Java 的垃圾回收机制是什么?”,RAG 会先搜索相关文档或知识库。

  2. 增强(Augmentation)

    • 将检索到的信息作为上下文(Context)输入给 LLM(如 GPT-4、Llama 2)。

    • 这样,模型生成的答案基于检索到的真实数据,而非仅依赖训练时的记忆。

  3. 生成(Generation)

    • LLM 结合检索到的信息和自身知识生成最终回答。


RAG 的工作流程

  1. 用户输入查询(如“Java 的垃圾回收机制是什么?”)

  2. 检索系统(如 Elasticsearch、FAISS)查找相关文档

  3. 将检索到的文档片段作为上下文 + 用户查询一起输入 LLM

  4. LLM 生成更准确、可靠的答案


RAG 的优势

✅ 减少幻觉(Hallucination):LLM 容易编造虚假信息,RAG 提供真实数据支撑。
✅ 动态知识更新:无需重新训练模型,更新知识库即可让模型获取最新信息。
✅ 可解释性:可以追踪答案的来源(如引用某篇文档)。
✅ 适用于专业领域:如医疗、法律、金融等需要精准知识的场景。


RAG vs 传统 LLM

对比项传统 LLM(如 GPT-3)RAG(检索增强 LLM)
知识来源训练时的固定数据外部动态知识库
更新知识需重新训练仅更新检索库
准确性可能产生幻觉基于真实数据
适用场景通用对话、创作事实性问答、专业咨询

RAG 的应用场景

  1. 智能问答系统(如 ChatGPT + 企业知识库)

  2. 法律/医疗咨询(基于最新法规或医学论文生成答案)

  3. 客服机器人(结合产品文档提供精准回复)

  4. 学术研究助手(检索论文并生成综述)


RAG 的代码示例(Python)

from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

# 1. 加载文档(如网页)
loader = WebBaseLoader("https://en.wikipedia.org/wiki/Java_(programming_language)")
docs = loader.load()

# 2. 创建向量数据库(用于检索)
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)

# 3. 构建 RAG 链
llm = ChatOpenAI(model="gpt-3.5-turbo")
qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())

# 4. 提问
question = "What is Java's garbage collection mechanism?"
result = qa_chain({"query": question})
print(result["result"])

总结

  • RAG = 检索(Retrieval) + 生成(Generation),增强 LLM 的事实性。

  • 适用于需要精准、最新知识的场景,减少模型幻觉。

  • 典型工具:LangChain + VectorDB(如 FAISS、Pinecone) + LLM(如 GPT-4)。

如果你想深入实现 RAG,可以尝试 LlamaIndex、LangChain 等框架! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值