转:http://blog.sina.com.cn/s/blog_69c3f0410100tztt.html
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。AC自动机算法分为3步:构造一棵Trie树,构造失败指针和模式匹配过程。
如果你对KMP算法和了解的话,应该知道KMP算法中的next函数(shift函数或者fail函数)是干什么用的。KMP中我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符,当A[i+1]≠B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配,而next函数恰恰记录了这个j应该调整到的位置。同样AC自动机的失败指针具有同样的功能,也就是说当我们的模式串在Tire上进行匹配时,如果与当前节点的关键字不能继续匹配的时候,就应该去当前节点的失败指针所指向的节点继续进行匹配。
看下面这个例子:给定5个单词:say she shr he her,然后给定一个字符串yasherhs。问一共有多少单词在这个字符串中出现过。我们先规定一下AC自动机所需要的一些数据结构,方便接下去的编程。
const int kind = 26;
struct node{
node *fail; //失败指针
node *next[kind]; //Tire每个节点的个子节点(最多个字母)
int count; //是否为该单词的最后一个节点
node(){ //构造函数初始化
fail=NULL;
count=0;
memset(next,NULL,sizeof(next));
}
}*q[500001]; //队列,方便用于bfs构造失败指针
char keyword[51]; //输入的单词
char str[1000001]; //模式串
int head,tail; //队列的头尾指针
void insert(char *str,node *root){
node *p=root;
int i=0,index;
while(str[i]){
index=str[i]-'a';
if(p->next[index]==NULL) p->next[index]=new node();
p=p->next[index];
i++;
}
p->count++; //在单词的最后一个节点count+1,代表一个单词
}
在构造完这棵Tire之后,接下去的工作就是构造下失败指针。构造失败指针的过程概括起来就一句话:设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。然后把当前节点的失败指针指向那个字母也为C的儿子。如果一直走到了root都没找到,那就把失败指针指向root。具体操作起来只需要:先把root加入队列(root的失败指针指向自己或者NULL),这以后我们每处理一个点,就把它的所有儿子加入队列,队列为空。
void build_ac_automation(node *root){
int i;
root->fail=NULL;
q[head++]=root;
while(head!=tail){
node *temp=q[tail++];
node *p=NULL;
for(i=0;i<26;i++){
if(temp->next[i]!=NULL){
if(temp==root) temp->next[i]->fail=root;
else{
p=temp->fail;
while(p!=NULL){
if(p->next[i]!=NULL){
temp->next[i]->fail=p->next[i];
break;
}
p=p->fail;
}
if(p==NULL) temp->next[i]->fail=root;
}
q[head++]=temp->next[i];
}
}
}
}
从代码观察下构造失败指针的流程:对照图-2来看,首先root的fail指针指向NULL,然后root入队,进入循环。第1次循环的时候,我们需要处理2个节点:root->next‘h’-‘a’ 和 root->next‘s’-‘a’。把这2个节点的失败指针指向root,并且先后进入队列,失败指针的指向对应图-2中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p指向h节点的fail指针指向的节点,也就是root;进入第13行的循环后,p=p->fail也就是p=NULL,这时退出循环,并把节点e的fail指针指向root,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。在程序运行到14行时,由于p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。
最后,我们便可以在AC自动机上查找模式串中出现过哪些单词了。匹配过程分两种情况:(1)当前字符匹配, 表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标字符串指针移向下个字符继续匹配;(2)当前字符 不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程中的任意一个,直到模式串走到结尾为止。
int query(node *root){
int i=0,cnt=0,index,len=strlen(str);
node *p=root;
while(str[i]){
index=str[i]-'a';
while(p->next[index]==NULL && p!=root) p=p->fail;
p=p->next[index];
p=(p==NULL)?root:p;
node *temp=p;
while(temp!=root && temp->count!=-1){
cnt+=temp->count;
temp->count=-1;
temp=temp->fail;
}
i++;
}
return cnt;
}
对照图-2,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操作;i=2,3,4 时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经出现过了,防止重复 计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中count增加了 2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r节点,r节点的 count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。
以上来自:AC自动机算法详解(直接点击可查看原作者报告)
杭电的2222题的题意是给出n个单词和一个长字符串,问有几个单词出现在字符串中。
思路见以上从牛人博客上转来的详解,讲得非常好,给大家分享一下。
这是我AC的第一道AC自动机题。前几天一直在刷字典树题,偶有一次碰到一个AC自动机题,便想弄懂它。不过KMP并不熟,于是开始刷KMP。今天刚好有人提到了这一题。想想应该trie树和KMP学得差不多了,应该接触AC自动机了。就开始做这道题。从上午11点半一直做到下午快6点才AC掉它!幸亏找到以上的非常精典的解析,要不今天一天也难AC。对于字典树的建立我用是数组模拟链表,无论是代码长度(指没有注释的情况下)、运行时间还是内存都优越于以上作者的代码,(作者完整的原代码可通过上面给的链接查看),下面是我的AC代码。
#include<stdio.h>
#define M 10010
struct trie{
int sign;//是否为该单词的最后一个结点
int fail;//失配指针
int next[26];//26个字母方向的子结点
}t[M<<6];
int q[M<<6],head,tail,L;
char str[55],s[M<<8];
void Insert(char *a)//将单词插入字典树
{
int i=0,p=0,j,x;
while(a[i]){
x=t[p].next[a[i]-'a'];
if(x<0){//前面字符串未访问过此处,则申请新结点
t[p].next[a[i]-'a']=x=++L;//数组模拟链表申请新结点(即++L操作)
for(j=0;j<26;j++)t[x].next[j]=-1;
t[x].fail=-1;t[x].sign=0;//初始化新结点信息
}
p=x;
i++;
}
t[p].sign++;
}
void build_ACauto()//更新失配指针
{
int i,x,y,p;
t[0].fail=-1;
q[tail++]=0;//将根放入队列
while(head<tail){
x=q[head++];//取队首元素
for(i=0;i<26;i++){
y=t[x].next[i];
if(y>=0){
if(!x)t[y].fail=0;//如果x为根结点,那么他的子结点的失配指针为头结点
else{
p=t[x].fail;//取父结点的失配指针
while(p>=0){//如果失配指针不为空,继续找
if(t[p].next[i]>=0){//如果找到结点与相配
t[y].fail=t[p].next[i];//将失配指针指向它后退出循环
break;
}
p=t[p].fail;//否则继续往上找
}
if(p<0)t[y].fail=0;//如果最终还是没有找到,则失配指针指向根结点
}
q[tail++]=y;//将子结点存入队尾
}
}
}
}
int ACauto()//在字典树中查找s的子串在树中出现的次数
{
int i=0,j,p=0,x,num=0;
while(s[i]){
j=s[i]-'a';
while(t[p].next[j]<0&&p)p=t[p].fail;//从字典树中找到相配结点或到达根时退出
p=t[p].next[j];//指向找到的结点所对应字母
if(p<0)p=0;//如果没有找到,指针指向根结点
x=p;
while(x&&t[x].sign!=-1){//如果不是根结点且未访问过,则继续查找
num+=t[x].sign;
t[x].sign=-1;
x=t[x].fail;//由失配指针向上查找
}
i++;
}
return num;
}
int main()
{
int T,n,i;
scanf("%d",&T);
while(T--){
head=tail=L=0;
t[0].fail=-1;//初始化头结点信息
t[0].sign=0;
for(i=0;i<26;i++)t[0].next[i]=-1;
scanf("%d",&n);
while(n--){
scanf("%s",str);
Insert(str);//将读入的字符串插入字典树
}
build_ACauto();//更新字典树中的失配符
scanf("%s",s);
printf("%d\n",ACauto());//在字典树查找子串出现在字典树中的次数
}
return 0;
}