AC自动机 讲解

转:http://blog.sina.com.cn/s/blog_69c3f0410100tztt.html

首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。AC自动机算法分为3步:构造一棵Trie树,构造失败指针和模式匹配过程。
如果你对KMP算法和了解的话,应该知道KMP算法中的next函数(shift函数或者fail函数)是干什么用的。KMP中我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符,当A[i+1]≠B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配,而next函数恰恰记录了这个j应该调整到的位置。同样AC自动机的失败指针具有同样的功能,也就是说当我们的模式串在Tire上进行匹配时,如果与当前节点的关键字不能继续匹配的时候,就应该去当前节点的失败指针所指向的节点继续进行匹配。
看下面这个例子:给定5个单词:say she shr he her,然后给定一个字符串yasherhs。问一共有多少单词在这个字符串中出现过。我们先规定一下AC自动机所需要的一些数据结构,方便接下去的编程。

const int kind = 26; 
  struct node{  
      node *fail;       //失败指针
      node *next[kind]; //Tire每个节点的个子节点(最多个字母)
      int count;        //是否为该单词的最后一个节点
      node(){           //构造函数初始化
          fail=NULL; 
          count=0; 
          memset(next,NULL,sizeof(next)); 
     } 
 }*q[500001];          //队列,方便用于bfs构造失败指针
 char keyword[51];     //输入的单词
 char str[1000001];    //模式串
 int head,tail;        //队列的头尾指针

这里写图片描述

void insert(char *str,node *root){ 
      node *p=root; 
      int i=0,index;  
      while(str[i]){ 
          index=str[i]-'a'; 
          if(p->next[index]==NULL) p->next[index]=new node();  
          p=p->next[index];
          i++;
      } 
     p->count++;     //在单词的最后一个节点count+1,代表一个单词
 }

在构造完这棵Tire之后,接下去的工作就是构造下失败指针。构造失败指针的过程概括起来就一句话:设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。然后把当前节点的失败指针指向那个字母也为C的儿子。如果一直走到了root都没找到,那就把失败指针指向root。具体操作起来只需要:先把root加入队列(root的失败指针指向自己或者NULL),这以后我们每处理一个点,就把它的所有儿子加入队列,队列为空。

void build_ac_automation(node *root){
      int i;
      root->fail=NULL; 
      q[head++]=root; 
      while(head!=tail){ 
          node *temp=q[tail++]; 
          node *p=NULL; 
          for(i=0;i<26;i++){ 
              if(temp->next[i]!=NULL){ 
                 if(temp==root) temp->next[i]->fail=root;                 
                 else{ 
                     p=temp->fail; 
                     while(p!=NULL){  
                         if(p->next[i]!=NULL){ 
                             temp->next[i]->fail=p->next[i]; 
                             break; 
                         } 
                         p=p->fail; 
                     } 
                     if(p==NULL) temp->next[i]->fail=root; 
                 } 
                 q[head++]=temp->next[i];  
             } 
         }   
     } 
 }

从代码观察下构造失败指针的流程:对照图-2来看,首先root的fail指针指向NULL,然后root入队,进入循环。第1次循环的时候,我们需要处理2个节点:root->next‘h’-‘a’ 和 root->next‘s’-‘a’。把这2个节点的失败指针指向root,并且先后进入队列,失败指针的指向对应图-2中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p指向h节点的fail指针指向的节点,也就是root;进入第13行的循环后,p=p->fail也就是p=NULL,这时退出循环,并把节点e的fail指针指向root,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。在程序运行到14行时,由于p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。

这里写图片描述

最后,我们便可以在AC自动机上查找模式串中出现过哪些单词了。匹配过程分两种情况:(1)当前字符匹配, 表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标字符串指针移向下个字符继续匹配;(2)当前字符 不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程中的任意一个,直到模式串走到结尾为止。

int query(node *root){ 
      int i=0,cnt=0,index,len=strlen(str); 
      node *p=root;  
      while(str[i]){  
          index=str[i]-'a';  
          while(p->next[index]==NULL && p!=root) p=p->fail; 
          p=p->next[index]; 
          p=(p==NULL)?root:p; 
          node *temp=p; 
         while(temp!=root && temp->count!=-1){ 
             cnt+=temp->count; 
             temp->count=-1; 
             temp=temp->fail; 
         } 
         i++;                 
     }    
     return cnt; 
 }

对照图-2,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操作;i=2,3,4 时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经出现过了,防止重复 计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中count增加了 2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r节点,r节点的 count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。
以上来自:AC自动机算法详解(直接点击可查看原作者报告)
杭电的2222题的题意是给出n个单词和一个长字符串,问有几个单词出现在字符串中。
思路见以上从牛人博客上转来的详解,讲得非常好,给大家分享一下。
这是我AC的第一道AC自动机题。前几天一直在刷字典树题,偶有一次碰到一个AC自动机题,便想弄懂它。不过KMP并不熟,于是开始刷KMP。今天刚好有人提到了这一题。想想应该trie树和KMP学得差不多了,应该接触AC自动机了。就开始做这道题。从上午11点半一直做到下午快6点才AC掉它!幸亏找到以上的非常精典的解析,要不今天一天也难AC。对于字典树的建立我用是数组模拟链表,无论是代码长度(指没有注释的情况下)、运行时间还是内存都优越于以上作者的代码,(作者完整的原代码可通过上面给的链接查看),下面是我的AC代码。

#include<stdio.h>
#define M 10010
struct trie{
    int sign;//是否为该单词的最后一个结点
    int fail;//失配指针
    int next[26];//26个字母方向的子结点
}t[M<<6];
int q[M<<6],head,tail,L;
char str[55],s[M<<8];
void Insert(char *a)//将单词插入字典树
{
    int i=0,p=0,j,x;
    while(a[i]){
        x=t[p].next[a[i]-'a'];
        if(x<0){//前面字符串未访问过此处,则申请新结点
            t[p].next[a[i]-'a']=x=++L;//数组模拟链表申请新结点(即++L操作)
            for(j=0;j<26;j++)t[x].next[j]=-1;
            t[x].fail=-1;t[x].sign=0;//初始化新结点信息
        }
        p=x;
        i++;
    }
    t[p].sign++;
}
void build_ACauto()//更新失配指针
{
    int i,x,y,p;
    t[0].fail=-1;
    q[tail++]=0;//将根放入队列
    while(head<tail){
        x=q[head++];//取队首元素
        for(i=0;i<26;i++){
            y=t[x].next[i];
            if(y>=0){
                if(!x)t[y].fail=0;//如果x为根结点,那么他的子结点的失配指针为头结点
                else{
                    p=t[x].fail;//取父结点的失配指针
                    while(p>=0){//如果失配指针不为空,继续找
                        if(t[p].next[i]>=0){//如果找到结点与相配
                            t[y].fail=t[p].next[i];//将失配指针指向它后退出循环
                            break;
                        }
                        p=t[p].fail;//否则继续往上找
                    }
                    if(p<0)t[y].fail=0;//如果最终还是没有找到,则失配指针指向根结点
                }
                q[tail++]=y;//将子结点存入队尾
            }
        }
    }
}
int ACauto()//在字典树中查找s的子串在树中出现的次数
{
    int i=0,j,p=0,x,num=0;
    while(s[i]){
        j=s[i]-'a';
        while(t[p].next[j]<0&&p)p=t[p].fail;//从字典树中找到相配结点或到达根时退出
        p=t[p].next[j];//指向找到的结点所对应字母
        if(p<0)p=0;//如果没有找到,指针指向根结点
        x=p;
        while(x&&t[x].sign!=-1){//如果不是根结点且未访问过,则继续查找
            num+=t[x].sign;
            t[x].sign=-1;
            x=t[x].fail;//由失配指针向上查找
        }
        i++;
    }
    return num;
}
int main()
{
    int T,n,i;
    scanf("%d",&T);
    while(T--){
        head=tail=L=0;
        t[0].fail=-1;//初始化头结点信息
        t[0].sign=0;
        for(i=0;i<26;i++)t[0].next[i]=-1;
        scanf("%d",&n);
        while(n--){
            scanf("%s",str);
            Insert(str);//将读入的字符串插入字典树
        }
        build_ACauto();//更新字典树中的失配符
        scanf("%s",s);
        printf("%d\n",ACauto());//在字典树查找子串出现在字典树中的次数
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值