腾讯消消乐 状压dp加普通dp

这里写图片描述

样例说明

对于样例 1 而言,f(1)=1f(1)=1,f(2)=9f(2)=9,f(3)=26f(3)=26,f(4)=24f(4)=24。

对于样例 2,f(1)=0f(1)=0,f(2)=2f(2)=2。

样例输入1

4 1
1 1 1 1
样例输出1

193
样例输入2

2 2
2 3
样例输出2

4
样例输入3

1 233
233
样例输出3

1

首先这种肯定想到递推dp,然后就是如何递推过去,肯定就是dp[n]=前面所有可以到达的状态和。因为再走一步就可以达到dp[n].
如何找到前面所有走一步可以到达当前状态的状态。连续的gcd才是一个块.

用状压dp来分块找到哪些状态可以变为当前的状态 存起来 然后线性dp就好了

刚开始看到这个题一脸蒙蔽 是因为这句话没看懂:注意:一次删除以后,剩下的数会合并成为一个连续区间。

这个其实就是 1001001 这个状态可以由 1000001 这个状态转化而成 也就是1000001加一步可以得到 1001001

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

ll dp[20][(1<<18)+10];

vector<int> v[(1<<18)+10];

int a[30];

const int mod = 1e9+7;

int gcd(int a,int b)
{
    return (b==0)?a:gcd(b,a%b);
}


int main()
{
    int n,K;
    scanf("%d%d",&n,&K);
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    int end=(1<<n);
    for(int st=0;st<end;st++)
    {
        for(int j=0;j<n;j++)
        {
            if(st&(1<<j))
            {
                int tmp=st^(1<<j);
                v[st].push_back(tmp);
                int g=a[j];
                for(int k=j+1;k<n;k++)
                {
                    if(st&(1<<k))
                    {
                        if((g=gcd(g,a[k]))>=K)
                        tmp^=(1<<k),v[st].push_back(tmp);
                        else break;
                    }
                }
            }
        }
    }

    dp[0][0]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<end;j++)
        {
            for(int k=0;k<v[j].size();k++)
            {
                dp[i][j]=dp[i][j]+dp[i-1][v[j][k]]%mod;//从0开始 上一个状态 
                //加上一个块当前状态是由哪些上一个状态加块得到的,所以只要需要的块加一即可
            }
        }
    }
    long long res=0;
    for(int i=1;i<=n;i++)
    {
        res=(res+(ll)i*dp[i][(1<<n)-1]%mod)%mod;
    }
    printf("%lld\n",res );
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值