2021-07-28

SMALE预备役魔鬼训练营 Day3


一、上午

1.将向量下标为偶数的分量 ( x 2 , x 4 , …   ) (x_2,x_4,\dots) (x2,x4,)累加,写出相应的表达式。
表达式为 ∑ i % 2 = 0 x i \sum_{i\%2=0}x_i i%2=0xi
2.各出一道累加、累乘、积分表达式的习惯,并给出标准答案。
向量 X = { x 1 , … , x n } \mathbf{X}=\{x_1,\dots,x_n\} X={x1,,xn}求下标小于10的分量的和与积。
累加: ∑ i = 1 10 x i \sum_{i=1}^{10}x_i i=110xi
累乘: ∏ i = 1 10 x i \prod_{i=1}^{10}x_i i=110xi
函数 f ( x ) = x 2 + 1 f(x)=x^2+1 f(x)=x2+1,写出其在 [ − 2 , 2 ] [-2,2] [2,2]的积分表达式 ∫ − 2 2 ( x 2 + 1 ) d x \int_{-2}^{2}(x^2+1)\mathrm{d}x 22(x2+1)dx
3.给一个常用的定积分,将手算结果与程序结果对比。
常用定积分, ∫ 0 1 x d x = 0.5 \int_{0}^1x\mathrm{d}x=0.5 01xdx=0.5

public static void main(String[] args) {
    double sum=0;
    double deleta=0.01;
    for (double i=0;i<1;i=i+deleta){
        sum+=i*deleta;
    }
    System.out.println("sum="+sum);
    }

运行结果

exclude patterns:
sum=0.4950000000000004

结果没有太大差距

二、下午

1.自己写一个小例子来验证最小二乘法。

时间数量
24
35

这里的 x i x_i xi可以表示为 X = [ x i j ] 2 × 2 \mathbf{X}=[x_{ij}]_{2\times2} X=[xij]2×2
[ 1 2 1 3 ] \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \quad [1123]
y i y_i yi表示为 Y = [ 4 5 ] T \mathbf{Y}=\begin{bmatrix}4 &5\end{bmatrix}^\mathrm{T} Y=[45]T
w = [ a , b ] \mathbf{w}=[a,b] w=[a,b]
求:
arg ⁡ min ⁡ ∣ ∣ X w − Y ∣ ∣ 2 2 \arg\min||\mathbf{X}_{\mathbf{w}}-\mathbf{Y}||_2^2 argminXwY22
w = [ 2 , 1 ] \mathbf{w}=[2,1] w=[2,1] ∣ ∣ X w − Y ∣ ∣ 2 2 ||\mathbf{X}_{\mathbf{w}}-\mathbf{Y}||_2^2 XwY22最小,因此得 w \mathbf{w} w

三、晚上

1.推导
log ⁡ L ( w ) = ∑ i = 1 n log ⁡ P ( y i ∣ x i ; w ) = ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) + ( 1 − y i ) log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) = ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) 1 − P ( y i = 1 ∣ x i ; w ) + log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) = ∑ i = 1 n y i x i w − log ⁡ ( 1 + e x i w ) \begin{aligned}\log L(\mathbf{w}) = \sum_{i = 1}^n \log P(y_i \vert \mathbf{x}i; \mathbf{w}) \\ = \sum_{i = 1}^n y_i \log P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w}) + (1 - y_i) \log(1 - P(y_i = 1 \vert \mathbf{x}i;\mathbf{w})) \\ = \sum_{i = 1}^n y_i \log \frac{P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w})}{1 - P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w})} + \log (1 - P(y_i = 1 \vert \mathbf{x}i; \mathbf{w}))\\ = \sum_{i = 1}^n y_i \mathbf{x}_i \mathbf{w} - \log (1 + e^{\mathbf{x}_i \mathbf{w}}) \end{aligned} logL(w)=i=1nlogP(yixi;w)=i=1nyilogP(yi=1xi;w)+(1yi)log(1P(yi=1xi;w))=i=1nyilog1P(yi=1xi;w)P(yi=1xi;w)+log(1P(yi=1xi;w))=i=1nyixiwlog(1+exiw)
∂ log ⁡ L ( w ) ∂ w \begin{aligned} \frac{\partial \log L(\mathbf{w})}{\partial \mathbf{w}}\end{aligned} wlogL(w)

∂ ( y i x i w ) ∂ w = y i x i \begin{aligned} \frac{\partial (y_i\mathbf{x}_i\mathbf{w})}{\partial \mathbf{w}}=y_i\mathbf{x}_i\end{aligned} w(yixiw)=yixi
∂ ( log ⁡ ( 1 + e x i w ) ) ∂ w = 1 ( 1 + e x i w ) × ∂ ( e x i w ) ∂ w \begin{aligned} \frac{\partial(\log(1+e^{\mathbf{x}_i\mathbf{w}}))}{\partial \mathbf{w}}=\frac{1}{(1+e^{\mathbf{x}_i\mathbf{w}})}\end{aligned}\times \frac{\partial(e^{\mathbf{x}_i\mathbf{w}})}{\partial \mathbf{w}} w(log(1+exiw))=(1+exiw)1×w(exiw)
2.特点
用于分类(特别是二分类).
运用到了点与直线的距离.
用到了激活函数,比如sigmoid,当前还可以用其它的激活函数.
用到了最大似然.
用到了向量的偏导
用到了梯度下降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值