《Low-Dose CT》去噪论文

本文介绍了四篇关于利用深度学习技术进行低剂量CT图像去噪的论文,包括RED-CNN、WavResNet、结构敏感多尺度深度神经网络(SMGAN)和基于小波残差网络的去噪方法。这些方法在保留图像结构细节和纹理的同时,有效抑制了噪声,提高了图像质量。
摘要由CSDN通过智能技术生成


前言

1.《Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)》
2.《Wavelet Domain Residual Network (WavResNet) for Low-Dose X-ray CT Reconstruction》
3.《Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising》
4.《Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network》
其实最开始看是因为想在医学图像上面做一些工作,后来感觉还是比较不太好做,因为性能已经比较好了,比自然图像去噪要容易一些,再去改动网络模型结构,很少的提升空间。

一、《Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)》

1. 摘要

摘要—考虑到X射线对患者的潜在危险,小剂量CT在医学成像领域引起了极大的兴趣。 当前,主流的小剂量CT方法包括特定于供应商的正弦图域过滤和迭代重建算法,但是它们需要访问格式对大多数用户不透明的原始数据。 由于难以在图像域中对统计特征进行建模,因此,直接处理重建图像的现有方法无法很好地消除图像噪声,同时又保留了结构细节。 受深度学习理念的启发,这里我们将自动编码器,反卷积网络和快捷方式连接到残差编码器-解码器卷积神经网络(RED-CNN)中,以进行低剂量CT成像。 经过基于补丁的培训后,相对于最新方法,在模拟和临床案例中,拟议的RED-CNN均具有竞争优势。 尤其是,我们的方法在噪声抑制,结构保存和病变检测方面得到了良好的评估。

2.网络模型

在这里插入图片描述
在这里插入图片描述
代码如下:链接

import os
import numpy as np
import torch.nn as nn

class RED_CNN(nn.Module):
    def __init__(self, out_ch=96):
        super(RED_CNN, self).__init__()
        self.conv1 = nn.Conv2D(1, out_ch, kernel_size=5, stride=
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值