文章目录
- 前言
- 一、《Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)》
- 二、Wavelet Domain Residual Network (WavResNet) for Low-Dose X-ray CT Reconstruction
- 三、Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising
- 四、Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network
前言
1.《Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)》
2.《Wavelet Domain Residual Network (WavResNet) for Low-Dose X-ray CT Reconstruction》
3.《Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising》
4.《Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network》
其实最开始看是因为想在医学图像上面做一些工作,后来感觉还是比较不太好做,因为性能已经比较好了,比自然图像去噪要容易一些,再去改动网络模型结构,很少的提升空间。
一、《Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)》
1. 摘要
摘要—考虑到X射线对患者的潜在危险,小剂量CT在医学成像领域引起了极大的兴趣。 当前,主流的小剂量CT方法包括特定于供应商的正弦图域过滤和迭代重建算法,但是它们需要访问格式对大多数用户不透明的原始数据。 由于难以在图像域中对统计特征进行建模,因此,直接处理重建图像的现有方法无法很好地消除图像噪声,同时又保留了结构细节。 受深度学习理念的启发,这里我们将自动编码器,反卷积网络和快捷方式连接到残差编码器-解码器卷积神经网络(RED-CNN)中,以进行低剂量CT成像。 经过基于补丁的培训后,相对于最新方法,在模拟和临床案例中,拟议的RED-CNN均具有竞争优势。 尤其是,我们的方法在噪声抑制,结构保存和病变检测方面得到了良好的评估。
2.网络模型
代码如下:链接
import os
import numpy as np
import torch.nn as nn
class RED_CNN(nn.Module):
def __init__(self, out_ch=96):
super(RED_CNN, self).__init__()
self.conv1 = nn.Conv2D(1, out_ch, kernel_size=5, stride=