布线问题
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
样例输入
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
样例输出
4
来源
上传者
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define inf 1000000
int dist[505];
bool vis[505];
int map[505][505];
int v, e, sum;
int prim(){
memset(vis,0,sizeof(vis));
memset(dist,inf,sizeof(dist));
dist[1] = 0;
while(1){
int min = inf, u = -1, i, j;
for(i=1; i <= v; i++){
if(min>dist[i]&&!vis[i]){ // 找到最小结点并记录其角标
min = dist[i];
u = i;
}
}
vis[u] = 1;
if(u==-1) break; //再无最小结点时结束
sum += dist[u]; //权值之和
for(j = 1; j <= v; j++){ //找权值最小的边
if(!vis[j]&&dist[j]>map[u][j]){
dist[j] = map[u][j];
}
}
}
return sum;
}
int main(){
int n, i, a, b, c;
scanf("%d",&n);
while(n--){
sum = 0;
scanf("%d%d",&v,&e);
memset(map,inf,sizeof(map));
for(i = 1; i <= e; i++){
scanf("%d%d%d",&a,&b,&c);
if(map[a][b] > c){ //双向图
map[a][b] = map[b][a] = c;
}
}
memset(dist,inf,sizeof(dist));
int min = inf;
int s[505];
for(i = 1; i <= v; i++){
scanf("%d",&s[i]);
if(min > s[i]){ //最小供电费用
min = s[i];
}
}
printf("%d\n",prim()+min);
}
return 0;
}