《数据结构》— 线段树知识点模版详解

线段树详解

 

第一部分

1.定义:线段树(Segment Tree)是一种二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树

中的一个叶结点。对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为

[(a+b)/2,b]。因此线段树是满二叉树,最后的子节点数目为N,即整个线段区间的长度。使用线段树可以快速的查找某

一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让

空间压缩。

2.从一个小问题引出线段树

 

问题:在自然数,且所有的数不大于30000的范围内讨论一个问题:现在已知n条线段,把端点依次输入告诉你,然

后有m个询问,每个询问输入一个点,要求这个点在多少条线段上出现过;

基本解法(一)分析:最基本的解法当然就是读一个点,就把所有线段比一下,看看在不在线段中;每次询问都要

把n条线段查一次,那么m次询问,就要运算m*n次,复杂度就是O(m*n)道题m和n都是30000,那么计算量达到10^9;

而计算机1秒的计算量大约是10^8的数量级,所以这种方法无论怎么优化都是超时。因为n条线段是固定的,所以某种

程度上说每次都把n条线段查一遍有大量的重复和浪费;线段树就是可以解决这类问题的数据结构

线段树解题:

已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次?

在[0,7]区间上建立一棵满二叉树:

 

每个节点用结构体:
struct line
{
	int left,right;//左端点、右端点
	int n;//记录这条线段出现了多少次,默认为0
}a[16];

//和堆类似,满二叉树的性质决定a[i]的左儿子是a[2*i]、右儿子是a[2*i+1];然后对于已知的线段依次进行插入操作:从树根开始调用递归函数insert

void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{
	if (s==a[step].left && t==a[step].right)
	{
		a[step].n++;//插入的线段匹配则此条线段的记录+1
		return;//插入结束返回
	}
	if (a[step].left==a[step].right) return;//当前线段树的线段没有儿子,插入结束返回
	int mid=(a[step].left+a[step].right)/2;
	if (mid>=t) insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
	else if (mid<t) insert(t,s,step*2+1);
	else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
	{
		insert(s,mid,step*2);
		insert(mid+1,t,step*2+1);
	}
}

 

 三条已知线段插入过程:

[2,5]

--[2,5]与【0,7】比较,分成两部分:[2,3]插到左儿子【0,3】,[4,5]插到右儿子【4,7】

--[2,3]与【0,3】比较,插到右儿子【2,3】;[4,5]和【4,7】比较,插到左儿子【4,5】

--[2,3]与【2,3】匹配,【2,3】记录+1;[4,5]与【4,5】匹配,【4,5】记录+1

[4,6]

--[4,6]与【0,7】比较,插到右儿子【4,7】

--[4,6]与【4,7】比较,分成两部分,[4,5]插到左儿子【4,5】;[6,6]插到右儿子【6,7】

--[4,5]与【4,5】匹配,【4,5】记录+1;[6,6]与【6,7】比较,插到左儿子【6,6】

--[6,6]与【6,6】匹配,【6,6】记录+1

[0,7]

--[0,7]与【0,7】匹配,【0,7】记录+1

插入过程结束,线段树上的记录如下(红色数字为每条线段的记录n):

询问操作和插入操作类似,也是递归过程,略

2——依次把【0,7】 【0,3】 【2,3】 【2,2】的记录n加起来,结果为2

4——依次把【0,7】 【4,7】 【4,5】 【4,4】的记录n加起来,结果为3

7——依次把【0,7】 【4,7】 【6,7】 【7,7】的记录n加起来,结果为1

不管是插入操作还是查询操作,每次操作的执行次数仅为树的深度——logN

建树有n次插入操作,n*logN,一次查询要logN,m次就是m*logN;总共复杂度O(n+m)*logN,这道题N不超过

30000,logN约等于14,所以计算量在10^5~10^6之间,比普通方法快了1000倍;

这道题是线段树最基本的操作,只用到了插入和查找;删除操作和插入类似,扩展功能的还有测度、连续段数等等,

在N数据范围很大的时候,依然可以用离散化的方法建树。

第二部分:

 

一 概述

线段树,类似区间树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(logn)。

线段树的每个节点表示一个区间,子节点则分别表示父节点的左右半区间,例如父亲的区间是[a,b],那么(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b]。

二 从一个例子理解线段树

下面我们从一个经典的例子来了解线段树,问题描述如下:从数组arr[0...n-1]中查找某个数组某个区间内的最小值,其中数组大小固定,但是数组中的元素的值可以随时更新。

对这个问题一个简单的解法是:遍历数组区间找到最小值,时间复杂度是O(n),额外的空间复杂度O(1)。当数据量特别大,而查询操作很频繁的时候,耗时可能会不满足需求。

另一种解法:使用一个二维数组来保存提前计算好的区间[i,j]内的最小值,那么预处理时间为O(n^2),查询耗时O(1), 但是需要额外的O(n^2)空间,当数据量很大时,这个空间消耗是庞大的,而且当改变了数组中的某一个值时,更新二维数组中的最小值也很麻烦。

我们可以用线段树来解决这个问题:预处理耗时O(n),查询、更新操作O(logn),需要额外的空间O(n)。根据这个问题我们构造如下的二叉树

  • 叶子节点是原始组数arr中的元素
  • 非叶子节点代表它的所有子孙叶子节点所在区间的最小值

例如对于数组[2, 5, 1, 4, 9, 3]可以构造如下的二叉树(背景为白色表示叶子节点,非叶子节点的值是其对应数组区间内的最小值,例如根节点表示数组区间arr[0...5]内的最小值是1):                                                                                                                           

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值