自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 资源 (1)
  • 收藏
  • 关注

原创 从零开始学R(十)——基本统计:线性回归模型(LRM)

R的基本统计模型与回归分析这一节,也是这一分享合辑基础篇的最后一节,后续会有一些进阶篇,关于更进一步的模型,例如广义线性模型,分层线性模型,交互效应模型以及相关模型结果的可视化表达。这一节主要关注最基本的线性回归模型(Linear Regression Model)线性模型的设定与假设线性回归模型,其一,是一种回归模型;其二,变量间呈线性关系,基本数学方程如下Y=β0+β1X1+β2X2+...+βnXn+εY = \beta_0 + \beta_1X_1 + \beta_2X_2 +... +\b

2020-08-13 13:50:54 7685

原创 从零开始学R(九)——RMarkdown:数据分析沟通

可重复的数据分析数据分析有时候并不是一个人的工作,而是以团队为基础。在展示分析结果时,我们需要附上展示的源代码,以让同伴可以了解我们对数据的分析过程,并寻找出可能的漏洞。同时,有些数据分析所依赖的数据更新频率非常高,因此相应的数据分析报告更新频率也随之提高。我们不可能在每一次新数据出来之时再重新从头到尾设计一份数据分析结构,故可重复性是R为我们提供的另一个便利。本节我将分享R的Markdown语言。RMarkdown file和我们常常使用的R script不一样,RMarkdown file需要我

2020-08-13 11:18:57 808

原创 从零开始学R(八)——R的可视化之直方图、箱线图、提琴图

R的可视化操作(二)这一节的图包括直方图、箱线图和提琴图,由于上一节已经介绍了基本的修饰参数,因此这一节不再赘述,只分享每个图形的特点,相关修饰参数详见从零开始学R(七)——R的可视化之条形图、折线图、散点图直方图直方图可以反映连续型单变量的分布特征。一般在图条上会有概率密度曲线,更为平滑地反映数据分布特征。ggplot(iris) + geom_hist(aes(Sepal.Width))下图由上面的命令绘制而成,其中,系统默认将数据分为30组,如果使用其他组数,可以用stat_bin(b

2020-08-12 00:01:01 966

原创 从零开始学R(七)——R的可视化之条形图、折线图、散点图

R的可视化接下来两节我会使用ggplot2 package分享一些常用的可视化操作。这一节主要包括条形图(柱状图)、折线图和散点图条形图(柱状图)条形图用来展现离散型单变量的分布特征,柱状图是垂直放置的条形图。至于饼图与玫瑰图,则可以将笛卡尔坐标系转换为极坐标系,由于数据分析中这两种图的使用频率不高,因此我在这里不做进一步分享Scores <- as.data.frame(c(rep(1, 27), rep(2, 23)))names(Scores) <- "分科情况"Scores$

2020-08-11 22:52:29 1493

原创 从零开始学R(六)——使用ggplot2的可视化简介

R的可视化——ggplot2数据分析师或数据科学家花费大量精力去琢磨各种模型,对模型数据进行解读,但是在普通人眼里,这些数字是如此的繁杂,甚至有一些数据分析并不在意统计数字本身,而是在意它的显著性(Significance)。相比于文字来说,图片会给人的视觉带来更大的冲击力,因此,掌握R的可视化技巧,会让我们成为更加优秀的数据从业者。这一节重点介绍R的ggplot2 package。R有基础的graphics绘图package,也有后来发展起来的lattice package。基础绘图包具有极高的自由度

2020-08-09 18:57:01 466

原创 从零开始学R(五)——控制语句与函数

R的编程虽然R主打统计分析,但是R也是一种编程语言。虽然相比于C语言来说R的运行速度稍慢,但是R的编程更为方便,结构也更为丰富、控制语句这里将介绍两种基本语句:条件语句与循环语句条件语句上图就是条件语句的结构示意图,当初始值满足某个条件时,结果则输出Y1Y_1Y1​,否则输出Y2Y_2Y2​。下面,我们以一个例子来介绍条件语句。> if (258 %% 2 == 0 ){ print("258是偶数")}[1] "258是偶数"> if (258 %% 2 == 0 ) pr

2020-08-09 17:11:51 285

原创 从零开始学R(四)——常用命令:帮助,文件导入与导出与基本操作

R的常用命令R的命令非常多,但是有一些命令是非常常用的,在这里我做一个汇总,便于大家使用。(Tips:关于下载和安装R的package以及工作目录的获得与设置命令在第二篇已经聊过,此时就不再赘述了,详见从零开始学R(二)——R语言基础)1、帮助命令R是一款很优秀的统计软件,这样评价的一个重要原因是,使用者可以通过R自身来学习R。例如,如果我们想要了解数据框转换函数as.data.frame(),我们可以输入如下代码help("as.data.frame") ?"as.data.frame"在R

2020-08-07 21:06:40 1050

原创 从零开始学R(三)——基本计算

R的基本计算作为一款统计软件,R最重要的功能就是进行统计计算,这一节就和小伙伴聊一聊R的基本计算语句。数学运算R运行代码时,会调用计算机运行内存完成计算任务,因此R也可以实现常用的数学四则运算以及更进一步的复杂运算。x + y # 加法运算x - y # 减法运算x * y # 乘法运算x / y # 除法运算x ** y # 乘方(指数)运算(1)x ^ y # 乘方(指数)运算(2),开方运算的y为分数sqrt(x) #

2020-08-07 17:59:03 1145

原创 从零开始学R(二)——R语言基础

初识R语言上一节简单介绍了R语言的情况,这一节我想聊一聊R的基本情况。R的运行需要占据一定的内存(这里说的运行R一般都指运行RStudio,除非特别指出),所以推荐大家使用运行内存8G以上的电脑(我曾用4G的电脑运行R,一份35MB的数据读入时间接近5分钟)。R需要进行相应的计算,因此对于不同的数理统计模型来说,由于计算量大小不同,代码运行时间长短也不一致。有些复杂模型运行时间较长是很正常的现象哦。那些与我们打交道的R命令R pacakge的下载与调用首先,R通过各种程序包(package)的内

2020-08-05 22:47:11 1840

原创 从零开始学R语言——数据分析应用(Data Analysis)

从零开始学R(一)——R语言简介大数据时代来临,各行各业都更青睐数据思维,但是很多小伙伴在面对各式各样的数据分析软件时非常烦恼,不知如何下手。作为一个攀爬在数据高山的秃头少年,我非常理解初学者在探索数据分析过程中的痛苦。因此,我想在这里以介绍的形式帮大家循序渐进,从零开始学R。R是什么R是一款开源的、免费的、专注于数据分析的软件。它通过代码来控制相应的程序,通过对内嵌的数据集(data set)或者外源的数据进行合理的整理与统计分析,为数据分析师提供便捷。R语言是由S语言发展而来,而S语言又是基于C

2020-08-05 21:30:31 1903

lme4sample.RData

lme4sample.RData

2021-05-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除