第一条:CNN
1.基本概念:中文名卷积神经网络,是一种深度学习架构,其原理类似于人脑视觉处理机制,通过模拟生物神经元对视觉信息的局部感知特性,识别并处理图像等网格化数据。
2.卷积核:卷积核的作用类似于一个滤镜,能够过滤掉图像中的噪声、增强图像的特征。 卷积核通常是一个矩阵,它的大小和形状可以根据不同的任务进行调整。类似于左边基向量。
3.卷积操作(查的资料):使用可移动的卷积核(滤波器)在输入数据上进行滑动计算,对局部区域进行元素乘积求和,提取边缘、纹理等底层特征。例如,一个3×3的卷积核扫描图像时,每次计算局部9个像素的加权和,形成特征图。
第二条:编码与解码
1.Why:机器与人类对事物的理解是不一样的,我们需要了解事物数据的本质,对数据进行特征提取和降维,以便更好地处理和识别图像。
2.How(自我总结):
1)编码是将原始数据借助卷积核(初始随机的特征矩阵)通过多次的特征提取和降维,将数据压缩成低维核心特征信息,去除冗余信息。
2)解码是将编码得到的低维信息通过卷积核(与编码的不同)进行反向操作,逐步恢复数据的空间维度和特征细节信息,(最后重构出接近于原始输入的数据<自编码器才这么干>),最后重构出目标数据(从中文翻译成英文,地震数据反演出来的速度模型)。
3)在训练网络时,需要不断地解码和编码,通过不断的识别调整,解码出一个最佳结果。