HunyuanVideo LoRA 训练全攻略

HunyuanVideo LoRA 训练全攻略

一、数据准备规范

素材类型

  • 视频片段:10-15秒短视频(25fps)或100+连续帧图像序列。
  • 图片素材:10张以上多角度/多动作图像(推荐1024×768分辨率)。

标注要求

  • 使用DeepSeek自动生成结构化提示词(含场景/动作/风格描述)。
  • 视频标注需包含时间轴标记(如:0:05-0:10 镜头平移)。

二、环境配置要点

# 基础环境
Python 3.10+ | PyTorch 2.5.1+ | CUDA 12.1+
  • 推荐硬件配置:NVIDIA RTX 4090 (24G显存) 或 A100 (40G显存)。
  • 加速插件安装git clone https://github.com/facok/ComfyUI-TeaCacheHunyuanVideo

三、核心参数设置

参数项推荐值说明来源
learning_rate1e-4 → 3e-5采用余弦退火策略
batch_size2 (8G显存)每增加8G显存可翻倍
motion_module时空DiT层保持动作连贯性
TeaCache档位1.6倍速质量与速度平衡模式

四、进阶训练技巧

多阶段训练法

  1. 第一阶段:冻结文本编码器,仅训练UNet。
  2. 第二阶段:整体微调(learning_rate降低50%)。

提示词优化

# 标准结构示例
"主体描述, 环境细节, 镜头运动, 风格关键词"
# 示例:"红衣武士挥剑劈砍,竹林背景,慢镜头特写,电影级光影"

五、效果优化方案

物理增强

  • 添加流体/碰撞特效样本(如:水花飞溅、布料摆动)。
  • negative_prompt中排除常见缺陷:“畸变肢体|闪烁画面”。

混合训练

  • 叠加风格LoRA(如:水墨画风+写实动作)。
  • 使用XYZ图表对比不同rank值(64/128/256)的生成效果。

六、部署与加速

# TeaCache加速配置
from comfyui_teacache import TeaCacheSampler

sampler = TeaCacheSampler(mode="Faster")  # 2.1倍速模式

# 模型加载示例
model = HunyuanVideo.from_pretrained(
    "WanX-2.1",
    lora_path="custom_lora.safetensors",
    cache_optimizer=sampler
)

:建议开启自动检查点保存(每100步),训练中断时可从最近检查点恢复。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值