前缀和

写在前面:
1. 前缀和的标志就是求一个区间的和

2. 用a命名原数组,s命名前缀和数组

3. 原数组和前缀和数组的第一项往往是从下标1开始的,目的是防止s[i] = s[i - 1] + a[i]这段代码越界。

4. 前缀和问题一般考察一维形式和二维形式。

一维形式的核心代码是:
s[i] = s[i - 1] + a[i]
二维形式的核心代码是:
s[i][j] = s[i -1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j]

5. 从左上角点(x1, y1)到右下角(x2, y2)这个矩形范围的和为:

s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]

6.当写熟练后可以将原数组a合并到前缀和数组s中。

AcWing 795. 前缀和

AcWing 795. 前缀和
这是一道最经典,最简单的前缀和问题。

#include<iostream>
using namespace std;

const int N = 100010;
int a[N], s[N];
int main() {
  int n, m;
  cin >> n >> m;
  for (int i = 1; i <= n; i++)
    scanf("%d", &a[i]);
  
  for (int i = 1; i <= n; i++)
    s[i] = s[i - 1] + a[i];
  
  while (m--) {
    int l, r;
    scanf("%d%d", &l, &r);
    printf("%d\n", s[r] - s[l - 1]);
  }

  return 0;
}

AcWing 796. 子矩阵的和

AcWing 796. 子矩阵的和

最终代码:

#include<iostream>
using namespace std;

const int N = 1010;
int s[N][N];

int main() {
  int n, m, q;
  cin >> n >> m >> q;
  
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++) {
      scanf("%d", &s[i][j]);
      s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + s[i][j];
    }
  
  int x1, y1, x2, y2;
  while (q--) {
    scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
    printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
  }
  
  return 0;
  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值