计算大圆航线

本文详细介绍了大圆航线的原理,它是地球表面上两点间最短距离的航线。大圆航线计算涉及到球面三角形的公式,包括正弦、余弦和余切公式,并给出了大圆航线距离和初始方位角的计算方法。在实际应用中,通常采用折线来近似大圆航线。文章还提供了一个C#代码示例,用于计算大圆航线上的中间点坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大圆航线简介

球面上两点之间的最短距离的航线就是大圆航线。大圆航线是远距离航行的飞机规划航路时经常采用的航线。地球是一个椭球体,椭球面上的问题解算十分复杂,因此,在实际应用中,往往把地球看做一个正球体。地球面上两点间最短距离是通过两点间大圆的劣弧。大圆航线的计算包括初始航向角、航程、各分点坐标的计算。 大圆航线距离最短,但导航较困难。因此实用中通常采用长距离靠近大圆航等角航线线,而短距离走的作法。

计算公式

在球面上由三个大圆弧相交于三点所围成的球面部分称为球面三角形,构成三角形的大圆弧称为球面三角形的边,由两个大圆弧相交而成的球面角称为球面三角形的角。AB、AC、BC所围成的三角形便是一个球面三角形,通常用A、B、C表示球面三角形的三个角;用a、b、c表示球面三角形的三条边(图1)。这三个角A、B、C和三条边a、b、c合称为球面三角形六要素。由于a、b、c都是大圆弧,所以也都可以用弧度表示。

图1 球面三角形

根据球面三角形得到如下公式:

1.球面正弦公式

\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}                                                     (1)

2.边的余弦公式

\cos a=\cos b\cdot \cos c+\sin b\cdot \sin c\cdot \cos A                      (2)

\cos b= \cos a\cdot \cos c+\sin a\cdot \sin c\cdot \cos B                     (3)

\cos c= \cos a\cdot \cos b+\sin a\cdot \sin b\cdot \cos C                      (4)

3.球面三角形余切公式

\cot a\cdot \sin b=\cot A\cdot \sin C+\cos C\cdot \cos b                    (5)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值